Open Bisimulation, Revisited

S. Briais U. Nestmann

School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne

COMETE-PARSIFAL Seminar 11 May, 2006 Paris, FRANCE

ゆ マ マ マ マ マ マ マ マ マ マ マ マ う く 見

Outline

2 Bisimulations

- 3 The spi-calculus
- 4 K-open bisimulation
- 5 Open hedged bisimulation

-

-

Outline

- 2 Bisimulations
- 3 The spi-calculus
- 4 K-open bisimulation
- Open hedged bisimulation

Syntax

Processes

$$\begin{array}{c|cccc} P, Q & ::= & \mathbf{0} & | & !P & | & P \|Q & | & P+Q \\ & & & \pi.P & | & (\nu z)P & | & [x=y]P \end{array}$$

Prefixes

 $\pi ::= \tau \mid \mathbf{x}(\mathbf{z}) \mid \overline{\mathbf{x}}\langle \mathbf{z} \rangle$

Syntax

Processes

$$\begin{array}{c|cccc} P, Q & ::= & \mathbf{0} & | & !P & | & P \|Q & | & P+Q \\ & & & \pi.P & | & (\nu z)P & | & [x=y]P \end{array}$$

Prefixes

 π ::= τ | $\mathbf{x}(\mathbf{z})$ | $\overline{\mathbf{x}}\langle \mathbf{z} \rangle$

Only names

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Late Labelled Semantics

INPUT
$$\frac{P \xrightarrow{\overline{a}z} P'}{a(x).P \xrightarrow{a(x)} P}$$
 OPEN $\frac{P \xrightarrow{\overline{a}z} P'}{(\nu z) P \xrightarrow{(\nu z)\overline{a}z} P'} z \neq a$
CLOSE-L $\frac{P \xrightarrow{a(x)} P'}{P \| Q \xrightarrow{\tau} (\nu z) (P' \{ \frac{z}{X} \} \| Q')} z \notin fn(P)$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Outline

The pi-calculus

2 Bisimulations

- 3 The spi-calculus
- 4 K-open bisimulation
- Open hedged bisimulation

• Proof techniques for showing process equivalence

12

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...

시 프 시 시 프 시 프 네 프

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions

시 프 시 시 프 시 프 네 프

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

P | Q

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

$$\begin{array}{ccc} P & \xrightarrow{\alpha} & P' \\ | & & \\ Q & & \end{array}$$

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

$$\begin{array}{ccc} P & \xrightarrow{\alpha} & P' \\ | & \\ Q & \xrightarrow{\alpha} & \end{array}$$

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

$$\begin{array}{cccc} P & \xrightarrow{\alpha} & P' \\ | & & \\ Q & \xrightarrow{\alpha} & Q' \end{array}$$

- Proof techniques for showing process equivalence
- Wide variety of bisimulations: ground, early, late, open, ...
- The above cited differ on how they handle substitutions
- For example, ground: no substitutions at all

$$\begin{array}{cccc} P & \xrightarrow{\alpha} & P' \\ | & & | \\ Q & \xrightarrow{\alpha} & Q' \end{array}$$

- A substitution
 - has finite domain

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)

비는 지도에 지도에 드는

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)
- can be lifted to bigger entities (e.g.: messages)

A .

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)
- can be lifted to bigger entities (e.g.: messages)

Some questions when designing a bisimulation:

제 글 에 제 글 에 크 글 글

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)
- can be lifted to bigger entities (e.g.: messages)

Some questions when designing a bisimulation:

When should substitutions be applied?

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)
- can be lifted to bigger entities (e.g.: messages)
- Some questions when designing a bisimulation:
 - When should substitutions be applied?
 - Which names are substitutable?

4 3 5 4 3

A substitution

- has finite domain
- replaces something (a name) by something (e.g.: a name)
- can be lifted to bigger entities (e.g.: messages)
- Some questions when designing a bisimulation:
 - When should substitutions be applied?
 - Which names are substitutable?
 - By what?

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

▶ an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then

イロト 不得 トイヨト イヨト 正言 ろくの

- The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is
 - an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input,

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

- ▶ an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P'\mathcal{R} Q'$

- The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is
 - ▶ an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P'\mathcal{R} Q'$

ii) if
$$\alpha = a(x)$$
,

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

- an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P'\mathcal{R} Q'$
 - ii) if $\alpha = a(x)$, then for all $u \in \mathcal{N}$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P' \{ \frac{u}{x} \}, Q' \{ \frac{u}{x} \}) \in \mathcal{R}$

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

- an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input, there exists Q' such that Q $\xrightarrow{\alpha}$ Q' and P'R Q'
 - ii) if $\alpha = a(x)$, then for all $u \in \mathcal{N}$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P' \{ \frac{u}{x} \}, Q' \{ \frac{u}{x} \}) \in \mathcal{R}$
- a late bisimulation if instead of ii), it satisfies

• The symmetric relation $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}$ is

- an *early* bisimulation if for all $(P, Q) \in \mathcal{R}$, if $P \xrightarrow{\alpha} P'$ then
 - i) if α is not an input, there exists Q' such that Q $\xrightarrow{\alpha}$ Q' and P'R Q'
 - ii) if $\alpha = a(x)$, then for all $u \in \mathcal{N}$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P' \{ \frac{u}{x} \}, Q' \{ \frac{u}{x} \}) \in \mathcal{R}$
- a late bisimulation if instead of ii), it satisfies
 - ii') if $\alpha = a(x)$, then there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and for all $u \in \mathcal{N}$, $(P'\{\frac{u}{x}\}, Q'\{\frac{u}{x}\}) \in \mathcal{R}$

イロト 不得 トイヨト イヨト 正言 ろくの

- From late to open
 - Late bisimulation

Late bisimulation

P | Q

Late bisimulation

Late bisimulation

$$\begin{array}{ccc} P & \xrightarrow{a(x)} & P' \\ | & & \\ Q & \xrightarrow{a(x)} & \end{array}$$

Late bisimulation

$$\begin{array}{ccc} P & \xrightarrow{a(x)} & P' \\ | & & \\ Q & \xrightarrow{a(x)} & Q' \end{array}$$

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

Ρ

O

Late bisimulation

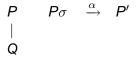
$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation



Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

$$\begin{array}{ccc} P & P\sigma & \xrightarrow{\alpha} & P' \\ | & & \\ Q & Q\sigma & \end{array}$$

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

$$\begin{array}{cccc} P & P\sigma & \xrightarrow{\alpha} & P' \\ | & & \\ Q & Q\sigma & \xrightarrow{\alpha} & Q' \end{array}$$

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

$$\begin{array}{cccc} P & P\sigma & \xrightarrow{\alpha} & P' \\ | & & | \\ Q & Q\sigma & \xrightarrow{\alpha} & Q' \end{array}$$

Late bisimulation

$$\begin{array}{cccc} P & \xrightarrow{a(x)} & P' & P'\{\frac{z}{x}\} \\ | & & | \\ Q & \xrightarrow{a(x)} & Q' & Q'\{\frac{z}{x}\} \end{array}$$

Open bisimulation

$$\begin{array}{cccc} P & P\sigma & \xrightarrow{\alpha} & P' \\ \sigma \triangleright D & | & & | \\ Q & Q\sigma & \xrightarrow{\alpha} & Q' \end{array}$$

Indexed by a distinction D.

• A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)
- A substitution σ respects $D (\sigma \triangleright D)$ if $x\sigma \neq y\sigma$ for all $(x, y) \in D$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)
- A substitution σ respects $D (\sigma \triangleright D)$ if $x\sigma \neq y\sigma$ for all $(x, y) \in D$.
- If $\sigma \triangleright D$, we define the updated distinction $D\sigma$.

- A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)
- A substitution σ respects $D (\sigma \triangleright D)$ if $x\sigma \neq y\sigma$ for all $(x, y) \in D$.
- If $\sigma \triangleright D$, we define the updated distinction $D\sigma$.
- For example, if $D = \{(x, y), (x, z), (y, x), (z, x)\}$ then
 - $x \mapsto u$ respects *D* and

A = A = A = A = A = A

- A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)
- A substitution σ respects $D (\sigma \triangleright D)$ if $x\sigma \neq y\sigma$ for all $(x, y) \in D$.
- If $\sigma \triangleright D$, we define the updated distinction $D\sigma$.
- For example, if $D = \{(x, y), (x, z), (y, x), (z, x)\}$ then
 - $x \mapsto u$ respects *D* and the updated distinction is $\{(u, y), (u, z), (y, u), (z, u)\}$

- A distinction *D* is an irreflexive and symmetric relation between names (finite list of inequalities)
- A substitution σ respects $D (\sigma \triangleright D)$ if $x\sigma \neq y\sigma$ for all $(x, y) \in D$.
- If $\sigma \triangleright D$, we define the updated distinction $D\sigma$.
- For example, if $D = \{(x, y), (x, z), (y, x), (z, x)\}$ then
 - $x \mapsto u$ respects *D* and the updated distinction is $\{(u, y), (u, z), (y, u), (z, u)\}$
 - On the contrary, $x \mapsto u, y \mapsto u$ does not respect D

同ト 4 三ト 4 三ト 三三 9 4 円

• An open bisimulation is a "symmetric" relation $\mathcal{R} \subset \mathcal{D} \ \times \mathcal{P} \times \mathcal{P}$ such that

 An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then

An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then Qσ → Q' and

- An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then Qσ → Q' and
 - if α is not a bound output, then $(D\sigma, P', Q') \in \mathcal{R}$

- An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then Qσ → Q' and
 - if α is not a bound output, then $(D\sigma, P', Q') \in \mathcal{R}$
 - otherwise, if $\alpha = (\nu z) \overline{a} z$, then

- An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then Qσ → Q' and
 - if α is not a bound output, then $(D\sigma, P', Q') \in \mathcal{R}$
 - otherwise, if $\alpha = (\nu z) \overline{a} z$, then $(D', P', Q') \in \mathcal{R}$ where $D' = D\sigma$

- An open bisimulation is a "symmetric" relation R ⊂ D × P × P such that for all (D, P, Q) ∈ R and σ ▷ D, if Pσ → P' then Qσ → Q' and
 - if α is not a bound output, then $(D\sigma, P', Q') \in \mathcal{R}$
 - otherwise, if $\alpha = (\nu z) \overline{a} z$, then $(D', P', Q') \in \mathcal{R}$ where $D' = D\sigma \cup \{z\} \otimes (\operatorname{fn}((P + Q)\sigma))$

- An open bisimulation is a "symmetric" relation *R* ⊂ *D* × *P* × *P* such that for all (*D*, *P*, *Q*) ∈ *R* and *σ* ▷ *D*, if *Pσ* → *P*′ then *Qσ* → *Q*′ and
 - if α is not a bound output, then $(D\sigma, P', Q') \in \mathcal{R}$
 - otherwise, if $\alpha = (\nu z) \overline{a} z$, then $(D', P', Q') \in \mathcal{R}$ where $D' = D\sigma \cup \{z\} \otimes (\operatorname{fn}((P + Q)\sigma))$
- Distinctions are used to forbid the fusing of fresh names with other names

The lazy flavour of open

$$P \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau + \tau.[x=a]\tau)$$
$$Q \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The lazy flavour of open

$$P \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau + \tau.[x = a]\tau)$$
$$Q \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau)$$

• P and Q are late bisimilar but not open

The lazy flavour of open

$$P \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau + \tau.[x=a]\tau)$$
$$Q \stackrel{\text{def}}{=} c(x).(\tau + \tau.\tau)$$

- P and Q are late bisimilar but not open
- In open, the instantiation of x can be delayed until x is used

A = A = A = A = A = A = A

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Contrary to early or late, it is a full congruence

《曰》《圖》《曰》《曰》 ([]]]

- Contrary to early or late, it is a full congruence
- More precisely, open *D*-bisimilarity is a *D*-congruence

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- Contrary to early or late, it is a full congruence
- More precisely, open *D*-bisimilarity is a *D*-congruence
- It is easily implementable (Mobility Workbench, ABC)

- Contrary to early or late, it is a full congruence
- More precisely, open *D*-bisimilarity is a *D*-congruence
- It is easily implementable (Mobility Workbench, ABC)

For these reasons, we wanted to extend open to the spi-calculus.

물 이 이 물 이 물 일 물

Outline

- The pi-calculus
- Bisimulations
- 3 The spi-calculus
 - 4 K-open bisimulation
- Open hedged bisimulation

• To model and study cryptographic protocols.

- To model and study cryptographic protocols.
- Messages

 $M, N ::= x \mid (M \cdot N) \mid \mathsf{E}_N(M)$

- To model and study cryptographic protocols.
- Messages

 $M, N ::= x \mid (M \cdot N) \mid \mathsf{E}_N(M)$

Expressions

$$E,F ::= x$$

$$\begin{vmatrix} (E \cdot F) & | \pi_1(E) & | \pi_2(E) \\ E_F(E) & | D_F(E) \end{vmatrix}$$

The spi-calculus

- To model and study cryptographic protocols.
- Messages

 $M, N ::= x | (M \cdot N) | E_N(M)$

Expressions

$$E,F ::= x$$

$$\begin{vmatrix} (E,F) & | \pi_1(E) & | \pi_2(E) \\ E_F(E) & | D_F(E) \end{vmatrix}$$

Guards

 $\phi ::= [E = F] | [E : \mathcal{N}]$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ ≤ Ξ = のへの

Evaluation of expressions and formulae

$$\begin{array}{ll} \llbracket a \rrbracket & \stackrel{\text{def}}{=} & a \\ \llbracket \mathsf{E}_{\mathcal{F}}(E) \rrbracket & \stackrel{\text{def}}{=} & \mathsf{E}_{\mathcal{N}}(\mathcal{M}) & \text{if } \llbracket E \rrbracket = \mathcal{M} \in \mathcal{M} \text{ and } \llbracket \mathcal{F} \rrbracket = \mathcal{N} \in \mathcal{M} \\ \llbracket \mathsf{D}_{\mathcal{F}}(E) \rrbracket & \stackrel{\text{def}}{=} & \mathcal{M} & \text{if } \llbracket E \rrbracket = \mathsf{E}_{\mathcal{N}}(\mathcal{M}) \in \mathcal{M} \text{ and } \llbracket \mathcal{F} \rrbracket = \mathcal{N} \in \mathcal{M} \\ \llbracket E \rrbracket & \stackrel{\text{def}}{=} & \bot & \text{in all other cases} \end{array}$$

Evaluation of expressions and formulae

$$\begin{bmatrix} a \end{bmatrix} \stackrel{\text{def}}{=} a$$

$$\begin{bmatrix} E_F(E) \end{bmatrix} \stackrel{\text{def}}{=} E_N(M) \quad \text{if } \llbracket E \rrbracket = M \in \mathcal{M} \text{ and } \llbracket F \rrbracket = N \in \mathcal{M}$$

$$\begin{bmatrix} D_F(E) \end{bmatrix} \stackrel{\text{def}}{=} M \qquad \text{if } \llbracket E \rrbracket = E_N(M) \in \mathcal{M} \text{ and } \llbracket F \rrbracket = N \in \mathcal{M}$$

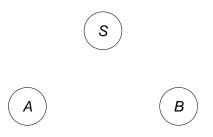
$$\llbracket E \rrbracket \stackrel{\text{def}}{=} \bot \qquad \text{in all other cases}$$

$$\begin{bmatrix} tt \rrbracket \stackrel{\text{def}}{=} true \\ \llbracket \phi \land \psi \rrbracket \stackrel{\text{def}}{=} \llbracket \phi \rrbracket \text{ and } \llbracket \psi \rrbracket$$

$$\begin{bmatrix} [E=F] \rrbracket \stackrel{\text{def}}{=} true \qquad \text{if } \llbracket E \rrbracket = \llbracket F \rrbracket = M \in \mathcal{M}$$

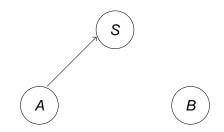
$$\llbracket [E:\mathcal{N}] \rrbracket \stackrel{\text{def}}{=} true \qquad \text{if } \llbracket E \rrbracket = a \in \mathcal{N}$$

$$\llbracket \phi \rrbracket \stackrel{\text{def}}{=} false \qquad \text{in all other cases}$$

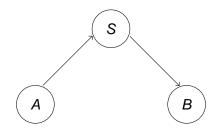


Briais, Nestmann (EPFL)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

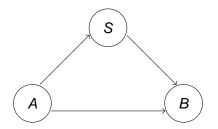


Briais, Nestmann (EPFL)



• $A \rightarrow S : (A \cdot E_{k_{AS}}((B \cdot k_{AB})))$ • $S \rightarrow B : E_{k_{BS}}(((A \cdot B) \cdot k_{AB}))$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙

.. in spi-calculus

$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu k_{AB}) \,\overline{S} \langle (A \cdot \mathsf{E}_{k_{AS}}((B \cdot k_{AB}))) \rangle \cdot \overline{B} \langle \mathsf{E}_{k_{AB}}(m) \rangle \cdot \mathbf{0} \\ \|B(x_1) \cdot \phi_1 B(x_2) \cdot \phi_2 \, \mathbf{0} \\ \|S(x_0) \cdot \phi_0 \overline{B} \langle \mathsf{E}_{k_{BS}}(((A \cdot B) \cdot \pi_2(\mathsf{D}_{k_{AS}}(\pi_2(x_0))))) \rangle \cdot \mathbf{0} \end{array}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙

.. in spi-calculus

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu k_{AB}) \,\overline{S} \langle (A \cdot \mathsf{E}_{k_{AS}}((B \cdot k_{AB}))) \rangle \cdot \overline{B} \langle \mathsf{E}_{k_{AB}}(m) \rangle \cdot \mathbf{0} \\ \|B(x_1) \cdot \phi_1 B(x_2) \cdot \phi_2 \, \mathbf{0} \\ \|S(x_0) \cdot \phi_0 \overline{B} \langle \mathsf{E}_{k_{BS}}(((A \cdot B) \cdot \pi_2(\mathsf{D}_{k_{AS}}(\pi_2(x_0))))) \rangle \cdot \mathbf{0} \end{array}$$

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

• The guard
$$[x=k]$$
 can never be true.

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name *k* has been extruded when performing $\overline{a} E_k(m)$.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ ≤ Ξ = のへの

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(\mathbf{x}) . (\overline{a} \langle k \rangle \| [\mathbf{x} = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name *k* has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x?

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name *k* has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x? a

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name *k* has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x?
 a, z for any z fresh

同ト 4 三ト 4 三ト 三三 9 4 円

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name k has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x?
 a, z for any z fresh(not in {k, m, a})

同ト 4 三ト 4 三ト 三三 9 4 円

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name k has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x?
 a, z for any z fresh(not in {k, m, a}), E_k(m)

Consider

$$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle \mathsf{E}_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \| [x = k] \overline{a} \langle a \rangle)$$

- The guard [x=k] can never be true.
- The name k has been extruded when performing $\overline{a} E_k(m)$.
- What are the possible values for x?
 a, z for any z fresh(not in {k, m, a}), E_k(m) and any message built with these "bricks"

• Bisimulations of π -calculus are two strong

<<p>(日本)

• Bisimulations of π -calculus are two strong

$$P(m) \stackrel{\mathrm{def}}{=} (\nu k) \,\overline{a} \langle \mathsf{E}_k(m)
angle$$

<<p>(日本)

• Bisimulations of π -calculus are two strong

$$\mathsf{P}(m) \stackrel{\mathrm{def}}{=} (\nu k) \,\overline{\mathsf{a}} \langle \mathsf{E}_k(m)
angle$$

For any *m* and *n*, we want P(m) and P(n) equivalent.

Bisimulations of π-calculus are two strong

$$\mathsf{P}(m) \stackrel{\mathrm{def}}{=} (\nu k) \,\overline{\mathsf{a}} \langle \mathsf{E}_k(m)
angle$$

For any *m* and *n*, we want P(m) and P(n) equivalent.

 Abadi and Gordon have introduced environment-sensitive bisimulation.

시 프 시 시 프 시 프 네 프

Outline

- The pi-calculus
- 2 Bisimulations
- 3 The spi-calculus
- 4 K-open bisimulation
- Open hedged bisimulation

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

• either initially free

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \boldsymbol{0}$$

A free name is

- either initially free
- or becomes free after an input

A = A = A = A = A = A = A

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

- either initially free
- or becomes free after an input
- or becomes free by scope extrusion

▶ 프네님

The Sec. 74

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

- either initially free
- or becomes free after an input
- or becomes free by scope extrusion
- The first two kinds are substitutable:

글 🖒 글 글

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

- either initially free
- or becomes free after an input
- or becomes free by scope extrusion
- The first two kinds are substitutable:
 - by any name that was known at the moment they became free or

ㅋㅋ ㅋㅋㅋ ㅋㅋ

$$\boldsymbol{P} \stackrel{\text{def}}{=} \boldsymbol{a}(\boldsymbol{x}).(\nu \boldsymbol{k}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{k} \rangle. \, \overline{\boldsymbol{x}} \langle \boldsymbol{k} \rangle. \, \boldsymbol{0}$$

A free name is

- either initially free
- or becomes free after an input
- or becomes free by scope extrusion
- The first two kinds are substitutable:
 - by any name that was known at the moment they became free or
 - any fresh name.

물 소문 소문

• A distinction is a finite list of *in*equalities between names.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.

A = A = A = E =
 O Q O

4 A N

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.

• e = (C, V, ≺)

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.
- $e = (C, V, \prec)$
 - C contains the emitted names (or messages) not in V

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.
- e = (C, V, ≺)
 - C contains the emitted names (or messages) not in V
 - V contains the input names and the initially free ones

同ト 4 三ト 4 三ト 三三 9 4 円

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.
- e = (C, V, ≺)
 - C contains the emitted names (or messages) not in V
 - V contains the input names and the initially free ones
 - \prec indicates for each $x \in V$ which names in C were known before

$$P \stackrel{\text{def}}{=} (\nu k) \,\overline{a} \langle k \rangle. a(x). ((\nu l) \,\overline{b} \langle l \rangle \| [x = k] \overline{a} \langle a \rangle \rangle$$
$$\underbrace{\frac{C \quad V \quad \prec}{\emptyset \quad \{a, b\} \quad \emptyset}}$$

 $D = \emptyset$

Briais, Nestmann (EPFL)

$$P \stackrel{\text{def}}{=} (\nu k) \,\overline{\mathbf{a}} \langle \mathbf{k} \rangle . \mathbf{a}(\mathbf{x}) . ((\nu l) \,\overline{\mathbf{b}} \langle l \rangle \| [\mathbf{x} = \mathbf{k}] \,\overline{\mathbf{a}} \langle \mathbf{a} \rangle)$$

С	V	\prec
Ø	{ a , b }	Ø
{ k }	{ a , b }	Ø

 $D = k \neq a, k \neq b$

$$P \stackrel{\text{def}}{=} (\nu k) \overline{a} \langle k \rangle . \underline{a}(\mathbf{x}) . ((\nu l) \overline{b} \langle l \rangle \| [\mathbf{x} = k] \overline{a} \langle a \rangle)$$

С	V	\prec	
Ø	{ a , b }	Ø	
{ <i>k</i> }	{ a , b }	Ø	
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$	

$$D = k \neq a, k \neq b$$

$$P \stackrel{\text{def}}{=} (\nu k) \overline{a} \langle k \rangle . a(x) . ((\nu l) \overline{b} \langle l \rangle \| [x = k] \overline{a} \langle a \rangle)$$

С	V	\prec	
Ø	{ a , b }	Ø	
{ <i>k</i> }	{ a , b }	Ø	
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$	

$$D = k \neq a, k \neq b$$

$$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\boldsymbol{k}) \, \overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle. \boldsymbol{a}(\boldsymbol{x}). ((\boldsymbol{\nu}\boldsymbol{l}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{l} \rangle \| [\boldsymbol{x} = \boldsymbol{l}] \, \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$$

С	V	\prec
Ø	{ a , b }	Ø
{ <i>k</i> }	{ a , b }	Ø
{ k }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$

$$D = k \neq a, k \neq b$$

$$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu} \boldsymbol{k}) \, \overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle. \boldsymbol{a}(\boldsymbol{x}). ((\boldsymbol{\nu} \boldsymbol{l}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{l} \rangle \| [\boldsymbol{x} = \boldsymbol{k}] \, \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$$

С	V	\prec
Ø	{ a , b }	Ø
{ <i>k</i> }	{ a , b }	Ø
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$
{ <i>k</i> , <i>l</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$

 $D = k \neq a, k \neq b, l \neq a, l \neq b, l \neq x, k \neq l$

$$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu} \boldsymbol{k}) \, \overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle . \boldsymbol{a}(\boldsymbol{x}) . ((\boldsymbol{\nu} \boldsymbol{l}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{l} \rangle \| [\boldsymbol{x} = \boldsymbol{k}] \, \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$$

С	V	\prec
Ø	{ a , b }	Ø
{ <i>k</i> }	{ a , b }	Ø
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$
{ <i>k</i> , <i>l</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$

 $D = k \neq a, k \neq b, l \neq a, l \neq b, l \neq x, k \neq l$

$$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\boldsymbol{k}) \, \overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle. \boldsymbol{a}(\boldsymbol{x}). ((\boldsymbol{\nu}\boldsymbol{l}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{l} \rangle \| [\boldsymbol{x} = \boldsymbol{l}] \, \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$$

С	V	$ \prec$
Ø	{ a , b }	Ø
{ <i>k</i> }	{ a , b }	Ø
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$
{ <i>k</i> , <i>l</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$

 $D = k \neq a, k \neq b, l \neq a, l \neq b, l \neq x, k \neq l$

$$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu} \boldsymbol{k}) \, \overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle . \boldsymbol{a}(\boldsymbol{x}) . ((\boldsymbol{\nu} \boldsymbol{l}) \, \overline{\boldsymbol{b}} \langle \boldsymbol{l} \rangle \| [\boldsymbol{x} = \boldsymbol{k}] \, \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$$

С	V	$ \prec$
Ø	{ a , b }	Ø
{ <i>k</i> }	{ a , b }	Ø
{ <i>k</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$
{ <i>k</i> , <i>l</i> }	{ <i>a</i> , <i>b</i> , <i>x</i> }	$\{(k, x)\}$

 $D = k \neq a, k \neq b, l \neq a, l \neq b, l \neq x, k \neq l$

Refining distinctions

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.
- e = (C, V, ≺)
 - C contains the emitted names (or messages) not in V
 - V contains the input names and the initially free ones
 - ▶ \prec indicates for each $x \in V$ which names in *C* were known before
- A substitution σ respects e if supp(σ) ⊆ V and σ does not "contradict" ≺

Refining distinctions

- A distinction is a finite list of *in*equalities between names.
- We take a dual approach for constraining admissible substitutions.
- e = (C, V, ≺)
 - C contains the emitted names (or messages) not in V
 - V contains the input names and the initially free ones
 - ▶ \prec indicates for each $x \in V$ which names in *C* were known before
- A substitution σ respects e if supp(σ) ⊆ V and σ does not "contradict" ≺
- The corresponding distinction is

$$D(C, V, \prec) \stackrel{\text{def}}{=} C^{\neq} \cup \{n \neq x \mid n \in C \land \neg(n \prec x)\}$$

We have

We have

۲

$$P \sim_{\mathsf{K}}^{(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q} \Rightarrow P \sim_{\mathsf{O}}^{\mathsf{D}(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q}$$

We have

۲

۲

 $P \sim_{\mathsf{K}}^{(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q} \Rightarrow P \sim_{\mathsf{O}}^{\mathit{D}(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q}$

$$P \sim_{O}^{D(C,V,\prec)} Q \Rightarrow P \sim_{K}^{(C,V,\prec)} Q$$

Briais, Nestmann (EPFL)

We have

$$P \sim_{\mathsf{K}}^{(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q} \Rightarrow P \sim_{\mathsf{O}}^{\mathsf{D}(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q}$$

$$P\sim_{\mathsf{O}}^{D(C,V,\prec)} \mathsf{Q} \Rightarrow P\sim_{\mathsf{K}}^{(C,V,\prec)} \mathsf{Q}$$

• In particular

$$P \sim^{\emptyset}_{\mathsf{O}} \mathsf{Q} \Leftrightarrow P \sim^{(\emptyset, \mathsf{fn}(P+\mathsf{Q}), \emptyset)}_{\mathsf{K}} \mathsf{Q}$$

We have

$$P \sim_{\mathsf{K}}^{(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q} \Rightarrow P \sim_{\mathsf{O}}^{\mathsf{D}(\mathsf{C},\mathsf{V},\prec)} \mathsf{Q}$$

$$P \sim_{O}^{D(C,V,\prec)} Q \Rightarrow P \sim_{K}^{(C,V,\prec)} Q$$

In particular

$$P \sim_{\mathsf{O}}^{\emptyset} \mathsf{Q} \Leftrightarrow P \sim_{\mathsf{K}}^{(\emptyset,\mathsf{fn}(P+\mathsf{Q}),\emptyset)} \mathsf{Q}$$

 if e is an environment, then open D(e)-bisimilarity is an e-congruence

Outline

- The pi-calculus
- 2 Bisimulations
- 3 The spi-calculus
- 4 K-open bisimulation
- 5 Open hedged bisimulation

< 6 b

• A hedge h is a finite set of pairs of message

・ 同 ト ・ 日 ト ・ 日 ト

- A hedge h is a finite set of pairs of message
- The synthesis S(h) is the smallest set that contains *h* and satisfies

$$(\text{SYN-ENC}) \ \frac{(M,N) \in \mathcal{S}(h)}{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{L}(N)) \in \mathcal{S}(h)}$$

물 문 제 물 문 물 물 물

- A hedge h is a finite set of pairs of message
- The synthesis S(h) is the smallest set that contains *h* and satisfies

$$(\text{SYN-ENC}) \ \frac{(M,N) \in \mathcal{S}(h)}{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{L}(N)) \in \mathcal{S}(h)}$$

• For example, if $h = \{(a, a), (k, k)\}$, we have $(\mathsf{E}_k(a), \mathsf{E}_k(a)) \in \mathcal{S}(h)$

- A hedge h is a finite set of pairs of message
- The synthesis S(h) is the smallest set that contains h and satisfies

$$(\text{SYN-ENC}) \ \frac{(M,N) \in \mathcal{S}(h)}{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{L}(N)) \in \mathcal{S}(h)}$$

- For example, if $h = \{(a, a), (k, k)\}$, we have $(\mathsf{E}_k(a), \mathsf{E}_k(a)) \in \mathcal{S}(h)$
- In general, S(h) is not a hedge since it is not finite.

 The analysis A(h) is the smallest hedge that contains h and satisfies

$$(\text{ana-dec}) \ \frac{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{L}(N)) \in \mathcal{A}(h)}{(M,N) \in \mathcal{A}(h)}$$

 The analysis A(h) is the smallest hedge that contains h and satisfies

$$(\text{ana-dec}) \ \frac{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{\mathcal{L}}(N)) \in \mathcal{A}(h)}{(M,N) \in \mathcal{A}(h)}$$

For example, if h = {(k, k), (E_k(a), E_k(a))}, we have A(h) = {(k, k), (E_k(a), E_k(a)), (a, a)}.

 The analysis A(h) is the smallest hedge that contains h and satisfies

$$(\text{ana-dec}) \ \frac{(\mathsf{E}_{\mathcal{K}}(M),\mathsf{E}_{L}(N)) \in \mathcal{A}(h)}{(M,N) \in \mathcal{A}(h)}$$

- For example, if $h = \{(k, k), (E_k(a), E_k(a))\}$, we have $A(h) = \{(k, k), (E_k(a), E_k(a)), (a, a)\}$.
- The irreducibles $\mathcal{I}(h)$ is a "minimal" hedge "equivalent" to $\mathcal{A}(h)$

A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent

• if
$$P \xrightarrow{\alpha} P'$$

1 if
$$\alpha = \tau$$
,

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent

• if
$$P \xrightarrow{\alpha} P'$$
 then $Q \xrightarrow{\beta} Q'$ and

1 if
$$\alpha = au$$
 ,

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ then $Q \xrightarrow{\beta} Q'$ and
 - (1) if $\alpha = \tau$, then $\beta = \tau$ and $(h, P', Q') \in \mathcal{R}$

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - ► if $P \xrightarrow{\alpha} P'$ then $Q \xrightarrow{\beta} Q'$ and • if $\alpha = \tau$, then $\beta = \tau$ and $(h, P', Q') \in \mathcal{R}$

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ and $ch(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

1 if
$$\alpha = \tau$$
, then $\beta = \tau$ and $(h, P', Q') \in \mathcal{R}$
2 if $\alpha = a(x)$,

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ and $ch(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

同ト 4 三ト 4 三ト 三三 9 4 円

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ and $ch(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

for all $(M, N) \in \mathcal{S}(h)$, $(h , P'\{M/x\}, Q'\{N/x\}) \in \mathcal{R}$

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ and $ch(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

• if
$$\alpha = \tau$$
, then $\beta = \tau$ and $(h, P', Q') \in \mathcal{R}$
• if $\alpha = a(x)$, then $\beta = b(x)$ and
(a, b) $\in S(h)$
for all $B \subset \mathcal{N} \times \mathcal{N}$ consistent (and minimal, and fresh)
for all $(M, N) \in S(h \cup B)$, $(h \cup B, P' \{ M/x \}, Q' \{ N/x \}) \in \mathcal{R}$

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent
 - if $P \xrightarrow{\alpha} P'$ and $ch(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

Late hedged bisimulation

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent

• if
$$P \xrightarrow{\alpha} P'$$
 and ch $(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

Late hedged bisimulation

- A "symmetric" relation *R* ⊂ *H* × *P* × *P* is a late hedged bisimulation if for all (*h*, *P*, *Q*) ∈ *R*,
 - h is consistent

• if
$$P \xrightarrow{\alpha} P'$$
 and ch $(\alpha) \in \pi_1(h)$ then $Q \xrightarrow{\beta} Q'$ and

An environment is now composed of

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

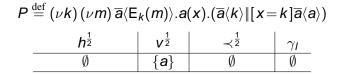
- An environment is now composed of
 - a hedge h: the emitted messages messages

A

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names *v*: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - <: precedence relation to indicate which part of h was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names



$P \stackrel{\text{def}}{=} (\nu k) (\nu m) \overline{a} \langle E_k(m) \rangle . a(x) . (\overline{a} \langle k \rangle \ [x = k] \overline{a} \langle a \rangle)$					
	$h^{rac{1}{2}}$	$V^{\frac{1}{2}}$	$\prec^{\frac{1}{2}}$	γ_{I}	
-	Ø	{ a }	Ø	Ø	
	$\{E_k(m)\}$	{ a }	Ø	{ a }	

$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu} \boldsymbol{k}) (\boldsymbol{\nu} \boldsymbol{m}) \overline{\boldsymbol{a}} \langle \boldsymbol{\Xi}_{\boldsymbol{k}}(\boldsymbol{m}) \rangle . \boldsymbol{a}(\boldsymbol{x}) . (\overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle \ [\boldsymbol{x} = \boldsymbol{k}] \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$					
	$h^{rac{1}{2}}$	$V^{\frac{1}{2}}$	$\prec^{\frac{1}{2}}$	γ_I	
	Ø	{ a }	Ø	Ø	
	$\{E_k(m)\}$	{ a }	Ø	{ a }	
	$\{E_k(m)\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\boldsymbol{k}) (\boldsymbol{\nu}\boldsymbol{m}) \overline{\boldsymbol{a}} \langle \boldsymbol{E}_{\boldsymbol{k}}(\boldsymbol{m}) \rangle . \boldsymbol{a}(\boldsymbol{x}) . (\overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle \ [\boldsymbol{x} = \boldsymbol{k}] \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$					
	$h^{rac{1}{2}}$	$V^{\frac{1}{2}}$	$\prec^{\frac{1}{2}}$	γ_I	
	Ø	{ a }	Ø	Ø	
	$\{E_k(m)\}$	{ a }	Ø	{ a }	
	$\{E_k(m)\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\boldsymbol{k}) (\boldsymbol{\nu}\boldsymbol{m}) \overline{\boldsymbol{a}} \langle \boldsymbol{E}_{k}(\boldsymbol{m}) \rangle . \boldsymbol{a}(\boldsymbol{x}) . (\overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle \ [\boldsymbol{x} = \boldsymbol{k}] \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$					
	$h^{rac{1}{2}}$	$V^{\frac{1}{2}}$	$\prec^{\frac{1}{2}}$	γ_{I}	
	Ø	{ a }	Ø	Ø	
	$\{E_k(m)\}$	{ a }	Ø	{ a }	
	$\{E_k(m)\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	
	$\{E_k(m), k, m\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	

Briais, Nestmann (EPFL)

$\boldsymbol{P} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\boldsymbol{k}) (\boldsymbol{\nu}\boldsymbol{m}) \overline{\boldsymbol{a}} \langle \boldsymbol{E}_{\boldsymbol{k}}(\boldsymbol{m}) \rangle . \boldsymbol{a}(\boldsymbol{x}) . (\overline{\boldsymbol{a}} \langle \boldsymbol{k} \rangle \ [\boldsymbol{x} = \boldsymbol{k}] \overline{\boldsymbol{a}} \langle \boldsymbol{a} \rangle)$					
	$h^{rac{1}{2}}$	$V^{\frac{1}{2}}$	$\prec^{\frac{1}{2}}$	γ_{I}	
	Ø	{ a }	Ø	Ø	
	$\{E_k(m)\}$	{ a }	Ø	{ a }	
	$\{E_k(m)\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	
	$\{E_k(m), k, m\}$	{ <i>a</i> , <i>x</i> }	$E_k(m) \prec x$	{ a }	

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names
- Moreover, we define
 - the sets of pair of respectful substitutions (σ, ρ)

시 프 시 시 프 시 프 네

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names
- Moreover, we define
 - the sets of pair of respectful substitutions (σ, ρ)
 - the consistency of an environment

시 프 시 시 프 시 프 네

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names
- Moreover, we define
 - the sets of pair of respectful substitutions (σ, ρ)
 - the consistency of an environment
 - the updating of an environment

A ∃ ► A ∃ ► A ∃ E

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names
- Moreover, we define
 - the sets of pair of respectful substitutions (σ, ρ)
 - the consistency of an environment
 - the updating of an environment
- ... and we finally define the bisimulation.

A ∃ ► A ∃ ► A ∃ E

- An environment is now composed of
 - a hedge h: the emitted messages messages
 - a finite set of pair of names v: the input names
 - ¬: precedence relation to indicate which part of *h* was available (for each input)
 - two sets of names (γ_l, γ_r) : type constraints for input names
- Moreover, we define
 - the sets of pair of respectful substitutions (σ, ρ)
 - the consistency of an environment
 - the updating of an environment
- ... and we finally define the bisimulation.
- The definition obtained is sound.

A ∃ ► A ∃ ► A ∃ E

Definition of K-open bisimulation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of K-open bisimulation

Coincides with open bisimulation

Definition of K-open bisimulation

- Coincides with open bisimulation
- Defined of bigger set of contexts that preserves open

- Definition of K-open bisimulation
 - Coincides with open bisimulation
 - Defined of bigger set of contexts that preserves open
- Open hedged bisimulation

A = A = A = E =
 O Q O

- Definition of K-open bisimulation
 - Coincides with open bisimulation
 - Defined of bigger set of contexts that preserves open
- Open hedged bisimulation
 - Sound w.r.t. late hedged bisimulation

Study open hedged bisimulation

- Study open hedged bisimulation
 - Link with symbolic bisimulation of [BBN04]

- Study open hedged bisimulation
 - Link with symbolic bisimulation of [BBN04]
 - Congruence properties?

Thank you!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you! Questions?

Briais, Nestmann (EPFL)

Open Bisimulation, Revisited

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bibliography

D. Sangiorgi

A Theory of Bisimulation for the π -calculus.

J. Borgström, S. Briais and U. Nestmann Symbolic Bisimulations in the Spi Calculus

e-respectful contexts

If $e = (O, V, \prec)$, a context $C[\cdot]$ respects e if it is generated by

$$C_{N}[\cdot] ::= \begin{bmatrix} \cdot \end{bmatrix} \quad \text{if } N = \emptyset$$

$$P \| C_{N}[\cdot] | C_{N}[\cdot] \| P$$

$$P + C_{N}[\cdot] | C_{N}[\cdot] + P$$

$$! C_{N}[\cdot]$$

$$\phi C_{N}[\cdot]$$

$$(\nu x) C_{N \setminus \{x\}}[\cdot]$$

$$\overline{a} \langle z \rangle \cdot C_{N}[\cdot]$$

$$a(x) \cdot C_{N}[\cdot] \quad \text{if } x \notin O \cup V$$

$$a(x) \cdot C_{N \cup N'}[\cdot] \quad \text{if } x \in V \text{ and } N' = \{n \in O \mid \neg n \prec x\}$$

with $N \subset O$ and $C_{\emptyset}[\cdot]$ as start symbol.