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Outline

Cryptographic protocols are error-prone

Cryptographic protocols
To secure communication over insecure networks (e.g. Internet).
A communication protocol that uses cryptography to achieve security
goals.

... are error-prone
Even when assuming perfect cryptographic primitives
Canonical example: Needham-Schroeder with public key

Why is it difficult?
Distributed algorithms that have the obligation to behave robustly in the
context of unknown hostile attackers.
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Outline

The Yahalom protocol

S

A B

1 A→ B : (A .nA)

2 B → S : (B .Encs
kBS

(A . (nA .nB)))

3 S → A : (Encs
kAS

((B . kAB) . (nA .nB)) .Encs
kBS

(A . kAB))

4 A→ B : (Encs
kBS

(A . kAB) .Encs
kAB

nB)
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Outline

The spi calculus approach
Abadi and Gordon

Cryptographic protocols are described in a precise and concise
way.

Equations to formulate security objectives.
I secrecy: P{M/x} ≈ P{N/x} for any M and N
I authenticity
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Outline

The spi calculus approach
Abadi and Gordon

Cryptographic protocols are described in a precise and concise
way.

(νkAS, kBS)

(νnA) B〈(A .nA)〉.A(x2).φ2B〈E2〉.0
| (νnB) B(x0).φ0S〈(B .Encs

kBS
(A . (π2 (x0) .nB)))〉.B(x3).φ3 0

| (νkAB) S(x1).φ1A〈E1〉.0

Equations to formulate security objectives.
I secrecy: P{M/x} ≈ P{N/x} for any M and N
I authenticity
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Outline

Testing equivalence

Usually ≈ stands for testing equivalence.
Intuitively, P and Q are testing equivalent if and only if they reveal
the same information to observers (i.e. attackers).

Formally, P passes the test (R, β) iff P |R ⇓β, i.e. P |R may
communicate on channel β.
P ' Q iff they pass the same tests, i.e. for any (R, β),

P |R ⇓β ⇐⇒ Q |R ⇓β

Problem: infinite quantification over arbitrary observers R.
In practise, we define sound approximations that are easier to
work with: bisimulations.
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Outline

Bisimulations

Behaviour of processes is described with a Labelled Transitions
System: P

µ−→ P ′

Two processes are bisimilar if they can play the same transitions

P

Q

Q replies to P

P

Q

P ′
µ

Q′
µ

P replies to Q
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Outline

Contributions

protocol spyer P

From protocol narrations to spi calculus
A formal semantics for protocol narrations.
A rigorous translation to spi calculus.

Sébastien Briais (EPFL) PhD Defense 2007, December 17th 8 / 29



Outline

Contributions

P

Q
P ≈ Q ?

Deciding process equivalence
A new notion of bisimulation for the spi calculus.
A symbolic characterisation.
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Outline

Contributions

P

Q
P ≈ Q ?

Towards a certified tool
Formalization of large parts of the developed theory in Coq.
Dream: Have a correct-by-construction tool.
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Outline

Contributions

1 subgoal

============================
bisimilar P Q

Reasoning within Coq
Reason formally about cryptographic protocols in Coq.
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Outline

1 From protocol narrations to spi calculus

2 An open variant of bisimulation for the spi calculus

3 A formalization in Coq
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From protocol narrations to spi calculus
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From protocol narrations to spi calculus

The Yahalom protocol

S

A B

1 A→ B : (A .nA)

2 B → S : (B .Encs
kBS

(A . (nA .nB)))

3 S → A : (Encs
kAS

((B . kAB) . (nA .nB)) .Encs
kBS

(A . kAB))

4 A→ B : (Encs
kBS

(A . kAB) .Encs
kAB

nB)
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From protocol narrations to spi calculus

The Yahalom protocol in spi-calculus

(νkAS, kBS)

(νnA) B〈(A .nA)〉.A(x2).φ2B〈(π2 (x2) .Encs
π2

“
π1

“
Decs

kAS
π1(x2)

””π2

(
π2

(
Decs

kAS
π1 (x2)

))
)〉.0

| (νnB) B(x0).φ0S〈(B .Encs
kBS

(A . (π2 (x0) .nB)))〉.B(x3).φ3 0
| (νkAB)

S(x1).φ1

A〈(Encs
kAS

((B . kAB) . (π1

(
π2

(
Decs

kBS
π2 (x1)

))
. π2

(
π2

(
Decs

kBS
π2 (x1)

))
)) .Encs

kBS
(A . kAB))〉.0

φ0 = [A=π1 (x0) ]

φ1 = [π1

(
π2

(
Decs

kBS
π2 (x1)

))
:M ]∧ [B =π1 (x1) ]∧ [A=π1

(
Decs

kBS
π2 (x1)

)
]

φ2 = [B =π1

(
π1

(
Decs

kAS
π1 (x2)

))
]∧ [nA =π1

(
π2

(
Decs

kAS
π1 (x2)

))
]

φ3 = [A=π1

(
Decs

kBS
π1 (x3)

)
]∧ [nB =Decs

π2

“
Decs

kBS
π1(x3)

”π2 (x3) ]
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From protocol narrations to spi calculus

State explicitly the assumptions
A protocol narration does not explicitly state the initial knowledge and
what is to be generated freshly during a protocol run.
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From protocol narrations to spi calculus

State explicitly the assumptions
A protocol narration does not explicitly state the initial knowledge and
what is to be generated freshly during a protocol run.

Principals act concurrently
A protocol narration describes an idealised sequential trace of
execution whereas the principals act concurrently.
A→ B : M actually means

(i) A asynchronously sends M towards B,
(ii) B receives some message
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From protocol narrations to spi calculus

State explicitly the assumptions
A protocol narration does not explicitly state the initial knowledge and
what is to be generated freshly during a protocol run.

Principals act concurrently
A protocol narration describes an idealised sequential trace of
execution whereas the principals act concurrently.
A→ B : M actually means

(i) A asynchronously sends M towards B,
(ii) B receives some message (intended to be M)

Principals perform on-reception checks
(iii) B checks that the message it just received has the expected

properties.
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From protocol narrations to spi calculus

Generating the checks

Current knowledge
{A,B,S, kAS,nA}

expected
(Encs

kAS
((B . kAB) . (nA .nB)) .Encs

kBS
(A . kAB))
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From protocol narrations to spi calculus

Generating the checks

Current knowledge
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expected actual
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Current knowledge
{A,B,S, kAS,nA}

expected actual
(Encs

kAS
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An open variant of bisimulation for the spi calculus

Outline

1 From protocol narrations to spi calculus

2 An open variant of bisimulation for the spi calculus

3 A formalization in Coq
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An open variant of bisimulation for the spi calculus

Situation in the pi calculus

Spi calculus is an extension of the pi calculus that incorporates
cryptographic primitives .

P,Q ::= 0 | a(x).P | a〈u〉.P
| [a=b ]P | (νx) P
| P |Q | P + Q | ! P

Open bisimulation (Sangiorgi) is at the basis of several tools that
automatically checks equivalence of pi terms
e.g. the Mobility Workbench (Victor)
Can we extend this notion to the spi calculus?
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An open variant of bisimulation for the spi calculus

Bisimulations in the pi calculus
The main differences is the way they handle substitutions

P

Q

P ′
µ

Q′
µ
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P
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P ′
a(x)

Q′
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An open variant of bisimulation for the spi calculus

Bisimulations in the pi calculus
The main differences is the way they handle substitutions

P

Q

P ′ P ′{u/x}
a(x)

Q′ Q′{u/x}
a(x)

for any name u

Early/Late
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An open variant of bisimulation for the spi calculus

Bisimulations in the pi calculus
The main differences is the way they handle substitutions

P Pσ

Q Qσ

P ′
µ

Q′
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for any σ
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An open variant of bisimulation for the spi calculus

Bisimulations in the pi calculus
The main differences is the way they handle substitutions

P Pσ

Q Qσ

D

P ′
µ

Q′
µ

D′

for any σ that respects D

Open

Distinctions D to prevent from fusing previously extruded names with
free names.
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An open variant of bisimulation for the spi calculus

Bisimulations in the pi calculus
The main differences is the way they handle substitutions

P Pσ

Q Qσ

D

P ′
µ

Q′
µ

D′

for any σ that respects D

Open

The quantification over all substitutions gives a call-by-need flavor to the
bisimulation. This idea is exploited by the tools which needs to inspect
only most general unifiers.

O-COMM-L

P
a(x)−−→
M

P ′ Q b u−−→
N

Q′

P |Q τ−−−−−−→
MN[a=b ]

P ′{u/x} |Q′
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An open variant of bisimulation for the spi calculus

Bisimulations in spi calculus

Consider P(M) := (νk) c〈Encs
kM〉.0.

We want P(M) ≈ P(N) since k is private and never revealed.

P(M) P(N)

0 0

c (νk)Encs
kM

Bisimulations of the pi calculus are too fine-grained.
Some pair of messages should be indistinguishable.
Bisimulations are extended with a data structure that represents
the observer knowledge. This has led to various notions of
environment-sensitive bisimulations (framed, alley, hedged, ...)
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.

Hedge
A hedge h ∈ H is a finite set of pairs of messages.
Intuitively (M,N) ∈ h means that M and N are indistinguishable.

A hedged bisimulation relates triples (h,P,Q).
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.

P(M) := (νk) c〈Encs
kM〉.0

(c, c)P(M) P(N)
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.

Q(M,N) := (νk) c〈Encs
kM〉.c〈Encs

kN〉.0

(c, c)Q(M,M) Q(M,N)

c (νk)Encs
kM c (νk)Encs

kM

(Encs
kM,Encs

kM)

0

c Encs
kM

0

c Encs
kN

(Encs
kM,Encs

kN)
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.
Q(M,N) := (νk) c〈Encs

kM〉.c〈Encs
kN〉.0

(c, c)Q(M,M) Q(M,N)

c (νk)Encs
kM c (νk)Encs

kM

(Encs
kM,Encs

kM)

0

c Encs
kM

0

c Encs
kN

(Encs
kM,Encs

kN)

The hedge must be consistent def. .
O := c(x).c(y).[x =y ]c〈fail〉.0
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.

R(M) := (νk) c〈Encs
kM〉.c〈k〉.0

(c, c)R(M) R(N)

c (νk)Encs
kM c (νk)Encs

kN

(Encs
kM,Encs

kN)

0

c k

0

c k

(k , k)
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.
R(M) := (νk) c〈Encs

kM〉.c〈k〉.0

(c, c)R(M) R(N)

c (νk)Encs
kM c (νk)Encs

kN

(Encs
kM,Encs

kN)

0

c k

0

c k

(k , k)
(M,N)

The hedge is analysed after outputs def. .
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.

S1(M) := (νk) c〈Encs
kM〉.c(x).[x =k ]c〈k〉.0

S2(M) := (νk) c〈Encs
kM〉.c(x).0

(c, c)S1(M) S2(M)

c (νk)Encs
kM c (νk)Encs

kM

(Encs
kM,Encs

kM)

[x =k ] 0

c(x)

0

c(x)
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An open variant of bisimulation for the spi calculus

Hedged bisimulation def.

Borgström and Nestmann.
S1(M) := (νk) c〈Encs

kM〉.c(x).[x =k ]c〈k〉.0
S2(M) := (νk) c〈Encs

kM〉.c(x).0

(c, c)S1(M) S2(M)

c (νk)Encs
kM c (νk)Encs

kM

(Encs
kM,Encs

kM)

[x =k ] 0

c(x)

0

c(x)

The possible pairs of input messages are constructed using the current
knowledge and possibly some fresh names def. .
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An open variant of bisimulation for the spi calculus

Open hedged bisimulation def.

Delaying instantiation of input variables

Which names are subjects to substitutions?
I Input variables.

What are the possible objects of substitutions?
I Messages constructed using the knowledge available at the

moment of the input and possibly some fresh names.

A variable dynamically typed as a name is not replaced by a
compound message LTS .

Hence the form of S-environments se = (h, v ,≺, (γl , γr )).

consistency of S-environments
A S-environment is consistent if for any instantiation of input variables,
the resulting hedge is consistent.
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An open variant of bisimulation for the spi calculus

Symbolic characterisation

Relies on the definition of a symbolic LTS def. .
The idea is to record —without checking— the conditions needed
to enable a transition.

P
µ7−→
Φ

P ′

The symbolic LTS helps to characterise precisely the set of
substitutions σ such that Pσ

µ−→ P ′.
Given a symbolic transition P

µ7−→
Φ

P ′, there is a finite complete set

of solutions of Φ.
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A formalization in Coq

Outline

1 From protocol narrations to spi calculus

2 An open variant of bisimulation for the spi calculus

3 A formalization in Coq
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A formalization in Coq

Representation of binders
de Bruijn indices

Representation of a(x).[Decs
kx :M ](νl) b〈l〉.0

z y x . . . l k j . . . c b a
0λ. [Decs

110 :M ]ν 3〈0〉.0
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A formalization in Coq

Representation of binders
de Bruijn indices

Several operations have to be defined to handle de Bruijn indices. more

Example: liftd(k , t) makes room for k new binders in t

z y x . . . c b a
λ.1〈0〉.0

z y x . . . c b a
0λ.0〈24〉. 0

z y x . . . c b a
λ. (1〈0〉.0 | 1λ.0〈25〉. 0 )
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A formalization in Coq

Representation of binders
de Bruijn indices

In practise:
5 operations on indices, 6 types (names, messages, ...)
about 60 useful facts relate these operations
not scalable and tedious to define and prove several times the
same operations/facts
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A formalization in Coq

Representation of binders
de Bruijn indices

Instead
1 define on names
2 lift to other types

deBruijnNat
definitions of de Bruijn operations

proofs of technical results

deBruijnType
specifications of de Bruijn operations

definitions of “lifters”

name message

expression formulae

process

agents
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A formalization in Coq

Abstracting the labelled transition system

There are several LTS to define.
Some properties are shared
(e.g. structural congruence preserves the transitions)
These LTS all follow the same pattern.
Instead of defining each LTS separately, we make a functor and
thus defer the definition of the semantics to the definitions of the
semantics of actions.
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A formalization in Coq

Abstracting the labelled transition system

We rely on a set of actions A and several functions to manipulate them:

mkSil : A (silent)
mkInp : E → A∪ {⊥} (input)
mkOutp : E × E → (A× E) ∪ {⊥} (output)
mkRes : A → A∪ {⊥} (restriction)
mkIf : F ×A → A∪ {⊥} (guard)
mkInt : A×A → A∪ {⊥} (interact)
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A formalization in Coq

Abstracting the labelled transition system

We then define a parametrised LTS.

INPUT
mkInp(E) = α ∈ A

Eλ.P α−→ λ.P
OUTPUT

mkOutp(E ,F ) = (α,M) ∈ A× E

E〈F 〉.P α−→ 〈M〉P

CLOSE-L
P α−→ F Q

β−→ C mkInt(α, β) = γ ∈ A
P |Q γ−→ F • C
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A formalization in Coq

Overview of the formalization

Monadic pi calculus
Pi LTS
Spi calculus
Hedges and their properties
Spi LTS: standard, with type constraints, symbolic
and their properties
Crash test: result about structural congruence
Late hedged bisimulation, correctness of up-to techniques
Small examples of bisimulations
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Conclusion

Conclusion

A formal semantics for protocol narrations.
I A rigorous translation into spi calculus.

An open style definition of bisimulation for the spi calculus.
I It is a sound proof technique.
I It is an extension of open bisimulation of the pi calculus.
I Its projection down to the pi calculus has enabled us to better

understand the original notion of open bisimulation.
I A symbolic characterisation as a promising first step towards

mechanisation.
A formalization in a proof assistant.

I Very useful while elaborating the theory.
I Already a framework to reason formally about cryptographic

protocols in Coq.
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Conclusion

Future work

Study furthermore open hedged bisimilarity.
I Congruence properties.
I Mechanisation.

Complete the formalization in Coq.
I Realise the dream of having a correct-by-construction equivalence

checker for the spi calculus.
I Define smart tactics for reasoning directly in Coq

(e.g. interface with the tool that handles the decidable fragment)

Demos?
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The end.
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Appendix

The spi calculus back

Syntax

Countably infinite set of names.
Communication channels, nonces, atomic data, ...
Messages

M,N ::= x | (M .N) | Encs
NM

Expressions
E ,F ::= x | (E .F ) | Encs

F E
| π1 (E) | π2 (E) | Decs

F E
Guards

φ ::= [E =F ] | [E :N ]
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Appendix

Syntax back

continued

Processes
P,Q ::= 0 | E(x).P | E〈F 〉.P

| φP | (νx) P
| P |Q | P + Q | ! P

Agents
A ::= P

| (x)P
| (νz̃) 〈M〉P where {z̃} ⊆ n(M)
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Appendix

Labelled transitions system back

Late semantics

INPUT
ec(E) = a ∈ N

E(x).P a−→ (x)P
OUTPUT

ec(E) = a ∈ N ec(F ) = M ∈ M

E〈F 〉.P a−→ 〈M〉P

CLOSE-L
P a−→ F Q a−→ C

P |Q τ−→ F • C
IFTHEN

P
µ−→ P ′

φP
µ−→ P ′

e(φ) = true

RES
P

µ−→ A

(νz) P
µ−→ (νννz) A

z 6∈ n(µ) PAR-L
P

µ−→ A

P |Q µ−→ A |Q

+ SUM, REP- et ALPHA.
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Appendix

Evaluation of expressions and guards back

Expressions:

ec(a) := a
ec(Encs

F E) := Encs
NM if ec(E) = M ∈ M

and ec(F ) = N ∈ M
ec((E1 .E2)) := (M1 .M2) if ec(E1) = M1 ∈ M

and ec(E2) = M2 ∈ M
ec(Decs

F E) := M if ec(E) = Encs
NM ∈ M

and ec(F ) = N ∈ M
ec(π1 (E)) := M1 if ec(E) = (M1 .M2) ∈ M
ec(π2 (E)) := M2 if ec(E) = (M1 .M2) ∈ M

ec(E) := ⊥ otherwise

Guards:
e([E =F ]) := true si ec(E) = ec(F ) = M ∈ M
e([E :N ]) := true si ec(E) = a ∈ N

e(φ) := false otherwise
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Appendix

Late hedged bisimulation back

A symmetric consistent hedged relation R is a (strong) late hedged
bisimulation if whenever (h,P,Q) ∈ R, we have that

1 if P τ−→ P ′ then
there exists Q′ such that Q τ−→ Q′ and (h,P ′,Q′) ∈ R

2 if P a−→ (x)P ′ (with x 6∈ n(π1(h)))
and (a,b) ∈ h then
there exist y and Q′ such that Q b−→ (y)Q′ (with y 6∈ n(π2(h)))
and for all B and (M,N) such that h `B (M,N)
we have (h ∪ B,P ′{M/x},Q′{N/y}) ∈ R.

3 if P a−→ (νc̃) 〈M〉P ′ (with {c̃} ∩ n(π1(h)) = ∅)
and (a,b) ∈ h then

there exist d̃ , Q′ and N such that Q b−→ (νd̃) 〈N〉Q′

(with
{

d̃
}
∩ n(π2(h)) = ∅)

and (I(h ∪ {(M,N)}),P ′,Q′) ∈ R.
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Appendix

Synthesis of a hedge and possible inputs back

Synthesis of a hedge
The synthesis S(h) is the smallest set that satisfies

SYN-INC
(M,N) ∈ h

(M,N) ∈ S(h)

SYN-ENC-S
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

(Encs
M2

M1,Encs
N2

N1) ∈ S(h)

SYN-PAIR
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

((M1 .M2), (N1 .N2)) ∈ S(h)
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Appendix

Synthesis of a hedge and possible inputs back

Possible inputs
Let h ∈ H, (M,N) ∈ M ×M
Let B ⊆ N ×N a consistent hedge such that

π1(B) ∩ n(π1(h)) = ∅
π2(B) ∩ n(π2(h)) = ∅

i.e. the names of B are fresh component-wise w.r.t. those of h.
We write h `B (M,N) if

∀(b1,b2) ∈ B : b1 ∈ n(M)∨b2 ∈ n(N)

(M,N) ∈ S(h ∪ B)
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Appendix

Analysis of a hedge and irreducibles back

Analysis
The analysis A(h) is the smallest hedge that is closed by analz(·).

ANA-INC
(M,N) ∈ h

(M,N) ∈ analz(h)

ANA-DEC-S
(Encs

M2
M1,Encs

N2
N1) ∈ analz(h) (M2,N2) ∈ S(h)

(M1,N1) ∈ analz(h)

ANA-FST
((M1 .M2), (N1 .N2)) ∈ analz(h)

(M1,N1) ∈ analz(h)

ANA-SND
((M1 .M2), (N1 .N2)) ∈ analz(h)

(M2,N2) ∈ analz(h)
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Appendix

Analysis of a hedge and irreducibles back

Irreducibles
I(h) is the smallest hedge such that S(I(h)) = S(A(h)).

Definition
A hedge h is irreducible iff I(h) = h.
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Appendix

Consistency of a hedge back

Consistency
A hedge h is consistent iff:
Whenever (M,N) ∈ h

M ∈ N ⇐⇒ N ∈ N
whenever (M ′,N ′) ∈ h : M = M ′ ⇐⇒ N = N ′

M 6= (M1 .M2) and N 6= (N1 .N2)

if M = Encs
M2

M1 then (M2,N2) 6∈ S(h)

if N = Encs
N2

N1 then (M2,N2) 6∈ S(h)

Lemma
A consistent hedge is irreducible.
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Appendix

S-environments back

Definition (S-environment)
A S-environment is a quadruple se = (h, v ,≺, (γl , γr )) where h ∈ H,
v ⊆ N ×N is a consistent hedge, ≺⊆ h×v , γl ⊆ π1(v) and γr ⊆ π2(v).

Hedge available
The hedge available to (x , y) ∈ v according to ≺ is defined by
se|(x ,y) := {(M,N) ∈ h | (M,N) ≺ (x , y)}.

Concrete hedge
The concrete hedge of se is H(se) := h ∪ v .
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Appendix

Respectful substitutions back

Definition (Respectful substitutions)

Let (σ, ρ) be a pair of substitutions, B ⊆ N ×N a consistent hedge and
se = (h, v ,≺, (γl , γr )) a S-environment. We say that (σ, ρ) respects se
with B — written (σ, ρ) .B se — if

1 supp(σ) ⊆ π1(v)

2 supp(ρ) ⊆ π2(v)

3 ∀(b1,b2) ∈ B : b1 ∈ n(σ(π1(v)))∨b2 ∈ n(ρ(π2(v)))

4 π1(B) ∩ (n(π1(h)) \ π1(v)) = ∅
5 π2(B) ∩ (n(π2(h)) \ π2(v)) = ∅
6 ∀(x , y) ∈ v : (xσ, yρ) ∈ S(I(se|(x ,y)(σ, ρ) ∪ B))

7 ∀x ∈ γl : xσ ∈ N
8 ∀y ∈ γr : yρ ∈ N
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Appendix

Open hedged bisimulation back

A symmetric consistent open hedged relation R is an open hedged
bisimulation if for all (se,P,Q) ∈ R, for all σ, ρ and B such that
(σ, ρ) .B se,

internal communications

if Pσ
τ
↪−→
S1

P ′ then

there exist Q′ and S2 such that Qρ
τ
↪−→
S2

Q′

and (se(σ,ρ)
B +c(S1,S2),P ′,Q′) ∈ R
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Appendix

Open hedged bisimulation back

A symmetric consistent open hedged relation R is an open hedged
bisimulation if for all (se,P,Q) ∈ R, for all σ, ρ and B such that
(σ, ρ) .B se,

inputs

if Pσ
a
↪−→
S1

(x)P ′ (with x 6∈ n(π1(H(se(σ,ρ)
B ))))

and (a,b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist y , Q′ and S2 such that Qρ
b
↪−→
S2

(y)Q′ (with

y 6∈ n(π2(H(se(σ,ρ)
B ))))

and (se(σ,ρ)
B +i(x , y) +c(S1,S2),P ′,Q′) ∈ R
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Appendix

Open hedged bisimulation back

A symmetric consistent open hedged relation R is an open hedged
bisimulation if for all (se,P,Q) ∈ R, for all σ, ρ and B such that
(σ, ρ) .B se,

outputs

if Pσ
a
↪−→
S1

(νc̃) 〈M〉P ′ (with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅)

and (a,b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist d̃ , N, Q′ and S2 such that Qρ
b
↪−→
S2

(νd̃) 〈N〉Q′

(with
{

d̃
}
∩ n(π2(H(se(σ,ρ)

B ))) = ∅)

and (se(σ,ρ)
B +o(M,N) +c(S1,S2),P ′,Q′) ∈ R
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Appendix

A LTS that collects type constraints back

NC-SILENT
τ.P

τ
↪−→
∅

P
NC-INPUT

ec(E) = a ∈ N

E(x).P
a

↪−−→
{a}

(x)P

NC-OUTPUT
ec(E) = a ∈ N ec(F ) = M ∈ M

E〈F 〉.P a
↪−−→
{a}
〈M〉P

NC-IFTHEN

P
µ
↪−→
S

A

φP
µ

↪−−−−−→
S∪nc(φ)

A
e(φ) = true

where nc([E :N ]) := {ec(E)} and nc([E =F ]) := ∅.
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Appendix

Properties back

Theorem
The two semantics are equivalent:

1 If P
µ−→ A there exists S ⊆ N such that P

µ
↪−→
S

A.

2 If P
µ
↪−→
S

A then P
µ−→ A.

Lemma

If P
µ
↪−→
S

A and σ : N → M is a substitution such that Sσ ⊆ N then

Pσ
µσ
↪−→
Sσ

Aσ.
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Appendix

A symbolic LTS back

S-GUARD
P

µ7−→
c

A

φP
µ7−−−−→

c&{φ}
A

S-INPUT

E(x).P
ea(E)7−−−−−→

{[E :N ]}
(x)P

S-OUTPUT

E〈F 〉.P ea(E)7−−−−−−−−−−→
{[E :N ],[F :M ]}

〈ea(F )〉P

S-CLOSE-L

P E7−→
c1

F Q E ′
7−→
c2

C

P |Q τ7−−−−−−−−−−−→
{[E =E ′ ]}&c1&c2

F • C

S-RES
P

µ7−→
c

A

(νz) P
µ7−−−−→

ν+(z,c)
(νννz) A

z 6∈ n(µ)
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Appendix

Transition constraints back

A transition constraint has the form (νz̃) Φ where Φ is a finite set
of guards and z̃ is a finite set of names that occur in Φ, i.e.
{z̃} ⊆ n(Φ)

Composition of constraints:
I Conjunction of c1 = (νz̃1) Φ1 and c2 = (νz̃2) Φ2

where {z̃1} ∩ {z̃2} = ∅, {z̃1} ∩ fn(c2) = {z̃2} ∩ fn(c1) = ∅

c1 & c2 := (νz̃1z̃2) (Φ1 ∪ Φ2)

I Restriction of name x .
If c = (νz̃) Φ and x 6∈ {z̃}:

ν+(x , c) := (νxz̃) Φ if x ∈ fn(c)
:= c otherwise
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Appendix

Abstract evaluation back

Abstract evaluation of expressions:

ea(a) := a if a ∈ N
ea(Encs

F E) := Encs
ea(F )ea(E)

ea((E .F )) := (ea(E) .ea(F ))
ea(Decs

F E) := E1 if ea(E) = Encs
E2

E1
Decs

ea(F )ea(E) otherwise
ea(π1 (E)) := E1 if ea(E) = (E1 .E2)

π1 (ea(E)) otherwise
ea(π2 (E)) := E2 if ea(E) = (E1 .E2)

π2 (ea(E)) otherwise
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Appendix

Properties back

Define >o as being the smallest precongruence on expressions that
satisfies:

π1 ((E1 .E2)) >o E1 if ec(E2) 6= ⊥
π2 ((E1 .E2)) >o E2 if ec(E1) 6= ⊥
Decs

E2
Encs

E2
E1 >o E1 if ec(E2) 6= ⊥

Extend this relation to agents in:
A >=

o B (A,B are concrete agents)
A >e

o B (A is symbolic, B is concrete)
(two ways to handle concretions)
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Appendix

Properties back

continued

Theorem
Let P,Q ∈ P and assume that P >o Q.

1 If P
µ
↪−→
S

A then Q
µ
↪−→
S

B and A >=
o B

2 If Q
µ
↪−→
S

B then P
µ
↪−→
S

A and A >=
o B

Theorem
Let P,Q ∈ P and σ : N → M a substitution.

1 If P
µs7−→
c

A and e(cσ) = true then Pσ
ec(µsσ)
↪−−−−→

nc(cσ)
B with Aσ >e

o B

2 If Pσ
µ
↪−→
S

B then P
µs7−→
c

A with e(cσ) = true, nc(cσ) = S,

ec(µsσ) = µ and Aσ >e
o B
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Appendix

Operations on de Bruijn indices back

Parametrised by the binding depth d
memd (i , t) returns true iff i is free in t
liftd (k , t) makes room for k new binders in t
Used in parallel composition of an agent and a process:

(λ.P) |Q := λ.(P | lift0(1,Q))
(νk 〈F 〉P) |Q := νk 〈F 〉(P | lift0(k ,Q))

For instance:

z y x . . . c b a
λ.1〈0〉.0

z y x . . . c b a
0λ.0〈24〉. 0

z y x . . . c b a
λ. (1〈0〉.0 | 1λ.0〈25〉. 0 )
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Appendix

Operations on de Bruijn indices back

continued

swapd (k , t) makes a circular permutation of the k first indices in t
lowd (t) removes the first index
Used in restriction of an agent:

ννν(λ.P) := λ.ν swap0(1,P)
ννν(νk 〈F 〉P) := νk+1〈F 〉P if memk (0,F ) = true

:= νk 〈lowk (F )〉ν swap0(k ,P) otherwise

lsubstd (k ,E , t) substitutes the |E | first indices with the
corresponding expression of E in t . The k first indices are bound
in E .

(λ.P) • (νk 〈F 〉Q) := νk (lsubst0(k ,F ,P) |Q)
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