Theory and Tool Support for the Formal Verification of Cryptographic Protocols

Sébastien Briais

École Polytechnique Fédérale de Lausanne

2007, December 17th

▶ Ξ[Ξ]

The Sec. 74

Cryptographic protocols are error-prone

Cryptographic protocols

To secure communication over insecure networks (e.g. Internet). A communication protocol that uses *cryptography* to achieve security goals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$A \to B: \quad (A \cdot n_A)
 B \to S: \quad (B \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot (n_A \cdot n_B)))
 S \to A: \quad (\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_A \cdot n_B)) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))$$

$$A \rightarrow B: \quad (A \cdot n_A)
 B \rightarrow S: \quad (B \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot (n_A \cdot n_B)))
 S \rightarrow A: \quad (\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_A \cdot n_B)) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))
 A \rightarrow B: \quad (\operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}) \cdot \operatorname{Enc}_{k_{AB}}^{s}n_B)$$

<ロ> <同> <同> <目> <同> <同> <同> <同> <同> <同</p>

Cryptographic protocols are error-prone

Cryptographic protocols

To secure communication over insecure networks (e.g. Internet). A communication protocol that uses *cryptography* to achieve security goals.

... are error-prone

- Even when assuming perfect cryptographic primitives
- Canonical example: Needham-Schroeder with public key

Cryptographic protocols are error-prone

Cryptographic protocols

To secure communication over insecure networks (e.g. Internet). A communication protocol that uses *cryptography* to achieve security goals.

... are error-prone

- Even when assuming perfect cryptographic primitives
- Canonical example: Needham-Schroeder with public key

Why is it difficult?

Distributed algorithms that have the obligation to behave robustly in the context of unknown hostile attackers.

Abadi and Gordon

 Cryptographic protocols are described in a precise and concise way.

- Equations to formulate security objectives.
 - secrecy: $P\{M/x\} \approx P\{N/x\}$ for any *M* and *N*
 - authenticity

Abadi and Gordon

 Cryptographic protocols are described in a precise and concise way.

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu n_A) \overline{B} \langle (A \cdot n_A) \rangle . A(x_2) . \phi_2 \overline{B} \langle E_2 \rangle . \mathbf{0} \\ | (\nu n_B) B(x_0) . \phi_0 \overline{S} \langle (B \cdot \operatorname{Enc}^s_{k_{BS}}(A \cdot (\pi_2 (x_0) \cdot n_B))) \rangle . B(x_3) . \phi_3 \mathbf{0} \\ | (\nu k_{AB}) S(x_1) . \phi_1 \overline{A} \langle E_1 \rangle . \mathbf{0} \end{array}$$

• Equations to formulate security objectives.

- secrecy: $P\{M/x\} \approx P\{N/x\}$ for any *M* and *N*
- authenticity

Abadi and Gordon

 Cryptographic protocols are described in a precise and concise way.

• Equations to formulate security objectives.

- secrecy: $P\{M/_x\} \approx P\{N/_x\}$ for any *M* and *N*
- authenticity

Abadi and Gordon

 Cryptographic protocols are described in a precise and concise way.

- Equations to formulate security objectives.
 - secrecy: $P\{M/x\} \approx P\{N/x\}$ for any *M* and *N*
 - authenticity

イロト (過) (ヨト (ヨト) 三日 ののの

Abadi and Gordon

 Cryptographic protocols are described in a precise and concise way.

- Equations to formulate security objectives.
 - secrecy: $P\{M/x\} \approx P\{N/x\}$ for any *M* and *N*
 - authenticity

イロト (過) (ヨト (ヨト) 三日 ののの

Testing equivalence

- Usually \approx stands for *testing equivalence*.
- Intuitively, *P* and *Q* are testing equivalent *if and only if* they reveal the same information to observers (i.e. attackers).

Testing equivalence

- Usually \approx stands for *testing equivalence*.
- Intuitively, P and Q are testing equivalent if and only if they reveal the same information to observers (i.e. attackers).
- Formally, *P* passes the test (*R*, β) iff *P* | *R* ↓_β, i.e. *P* | *R* may communicate on channel β.
- $P \simeq Q$ iff they pass the same tests, i.e. for any (R, β) ,

$$P \,|\, R \Downarrow_eta \Longleftrightarrow \, Q \,|\, R \Downarrow_eta$$

Testing equivalence

- Usually \approx stands for *testing equivalence*.
- Intuitively, P and Q are testing equivalent if and only if they reveal the same information to observers (i.e. attackers).
- Formally, *P* passes the test (*R*, β) iff *P* | *R* ↓_β, i.e. *P* | *R* may communicate on channel β.
- $P \simeq Q$ iff they pass the same tests, i.e. for any (R, β) ,

$$P \,|\, R \Downarrow_eta \iff Q \,|\, R \Downarrow_eta$$

- Problem: infinite quantification over arbitrary observers R.
- In practise, we define sound approximations that are easier to work with: bisimulations.

イロト 不得 トイヨト イヨト 正言 ろくの

Bisimulations

- Behaviour of processes is described with a Labelled Transitions System: P ^μ→ P'
- Two processes are bisimilar if they can play the same transitions

Bisimulations

- Behaviour of processes is described with a Labelled Transitions System: $P \xrightarrow{\mu} P'$
- Two processes are bisimilar if they can play the same transitions

Bisimulations

- Behaviour of processes is described with a Labelled Transitions System: P ^μ→ P'
- Two processes are bisimilar if they can play the same transitions

Bisimulations

- Behaviour of processes is described with a Labelled Transitions System: P ^μ→ P'
- Two processes are bisimilar if they can play the same transitions

Q replies to P

Bisimulations

- Behaviour of processes is described with a Labelled Transitions System: P ^μ→ P'
- Two processes are bisimilar if they can play the same transitions

000 E E 4 E + 4 E

Contributions

From protocol narrations to spi calculus

A formal semantics for protocol narrations. A rigorous translation to spi calculus.

Contributions

Deciding process equivalence

A new notion of bisimulation for the spi calculus. A symbolic characterisation.

Contributions

Towards a certified tool

Formalization of large parts of the developed theory in Coq. *Dream:* Have a correct-by-construction tool.

The Sec. 74

Contributions

1 subgoal

bisimilar P Q

Reasoning within Coq

Reason formally about cryptographic protocols in Coq.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ ≤ Ξ = のへの

2 An open variant of bisimulation for the spi calculus

1 From protocol narrations to spi calculus

2 An open variant of bisimulation for the spi calculus

A formalization in Coq

$$A \rightarrow B: \quad (A \cdot n_A)
2 B \rightarrow S: \quad (B \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot (n_A \cdot n_B)))
3 S \rightarrow A: \quad (\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_A \cdot n_B)) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))
4 A \rightarrow B: \quad (\operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}) \cdot \operatorname{Enc}_{k_{AB}}^{s}n_B)$$

The Yahalom protocol in spi-calculus

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu n_A) \overline{B} \langle (A \cdot n_A) \rangle . A(x_2) . \phi_2 \overline{B} \langle (\pi_2 \left(x_2 \right) . \operatorname{Enc}^s_{\pi_2 \left(\pi_1 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right)} \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right) \rangle) \\ | \left(\nu n_B \right) B(x_0) . \phi_0 \overline{S} \langle (B \cdot \operatorname{Enc}^s_{k_{BS}} (A \cdot \left(\pi_2 \left(x_0 \right) \cdot n_B \right))) \rangle . B(x_3) . \phi_3 \mathbf{0} \\ | \left(\nu k_{AB} \right) \\ S(x_1) . \phi_1 \\ \overline{A} \langle (\operatorname{Enc}^s_{k_{AS}} ((B \cdot k_{AB}) \cdot \left(\pi_1 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right) \right) \cdot \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right))) . \operatorname{Enc}^s_{k_{BS}} (A \cdot k_{AB})) \rangle . \mathbf{0} \end{array}$$

∃ ► ▲ Ξ ► Ξ = ● ○ < ○</p>

The Yahalom protocol in spi-calculus

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu n_A) \overline{B} \langle (A \cdot n_A) \rangle . A(x_2) . \phi_2 \overline{B} \langle (\pi_2 \left(x_2 \right) . \operatorname{Enc}^s_{\pi_2 \left(\pi_1 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right)} \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right) \rangle) \rangle . \mathbf{0} \\ | \left(\nu n_B \right) B(x_0) . \phi_0 \overline{S} \langle (B \cdot \operatorname{Enc}^s_{k_{BS}} (A \cdot \left(\pi_2 \left(x_0 \right) \cdot n_B \right) \right) \rangle) . B(x_3) . \phi_3 \mathbf{0} \\ | \left(\nu k_{AB} \right) \\ S(x_1) . \phi_1 \\ \overline{A} \langle (\operatorname{Enc}^s_{k_{AS}} ((B \cdot k_{AB}) \cdot \left(\pi_1 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right) \right) \cdot \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right))) . \mathbf{0} \\ \end{array}$$

∃ ► ▲ Ξ ► Ξ = ● ○ < ○</p>

The Yahalom protocol in spi-calculus

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu n_A) \overline{B} \langle (A \cdot n_A) \rangle . A(x_2) . \phi_2 \overline{B} \langle (\pi_2 \left(x_2 \right) . \operatorname{Enc}^s_{\pi_2 \left(\pi_1 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right)} \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{AS}} \pi_1 \left(x_2 \right) \right) \right) \rangle . \mathbf{0} \\ | \left(\nu n_B \right) B(x_0) . \phi_0 \overline{S} \langle (B \cdot \operatorname{Enc}^s_{k_{BS}} (A \cdot \left(\pi_2 \left(x_0 \right) \cdot n_B \right) \right) \rangle . B(x_3) . \phi_3 \mathbf{0} \\ | \left(\nu k_{AB} \right) \\ S(x_1) . \phi_1 \\ \overline{A} \langle (\operatorname{Enc}^s_{k_{AS}} ((B \cdot k_{AB}) \cdot \left(\pi_1 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right) \right) . \pi_2 \left(\pi_2 \left(\operatorname{Dec}^s_{k_{BS}} \pi_2 \left(x_1 \right) \right) \right))) . \mathbf{0} \\ \end{array}$$

$$\begin{aligned} \phi_{0} &= [A = \pi_{1} (x_{0})] \\ \phi_{1} &= [\pi_{1} \left(\pi_{2} \left(\text{Dec}_{k_{BS}}^{s} \pi_{2} (x_{1}) \right) \right) : \mathbf{M}] \wedge [B = \pi_{1} (x_{1})] \wedge [A = \pi_{1} \left(\text{Dec}_{k_{BS}}^{s} \pi_{2} (x_{1}) \right)] \\ \phi_{2} &= [B = \pi_{1} \left(\pi_{1} \left(\text{Dec}_{k_{AS}}^{s} \pi_{1} (x_{2}) \right) \right)] \wedge [n_{A} = \pi_{1} \left(\pi_{2} \left(\text{Dec}_{k_{AS}}^{s} \pi_{1} (x_{2}) \right) \right)] \\ \phi_{3} &= [A = \pi_{1} \left(\text{Dec}_{k_{BS}}^{s} \pi_{1} (x_{3}) \right)] \wedge [n_{B} = \text{Dec}_{\pi_{2} \left(\text{Dec}_{k_{BS}}^{s} \pi_{1} (x_{3}) \right)} \pi_{2} (x_{3})] \end{aligned}$$

Sébastien Briais (EPFL)

∃ ► ▲ Ξ ► Ξ = ● ○ < ○</p>

A protocol narration does not explicitly state the initial knowledge and what is to be generated freshly during a protocol run.

A protocol narration does not explicitly state the initial knowledge and what is to be generated freshly during a protocol run.

A, S share k_{AS} B, S share k_{BS} A generates n_A ; B generates n_B ; S generates k_{AB} ; $A \rightsquigarrow B : (A \cdot n_A)$; $B \rightsquigarrow S : (B \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot (n_A \cdot n_B)))$; $S \rightsquigarrow A : (\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_A \cdot n_B)) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))$; $A \rightsquigarrow B : (\operatorname{Enc}_{k_{AS}}^{s}(A \cdot k_{AB}) \cdot \operatorname{Enc}_{k_{AB}}^{s}n_B)$

< □ > < @ > < E > < E > E = 9000

A protocol narration does not explicitly state the initial knowledge and what is to be generated freshly during a protocol run.

Principals act concurrently

A protocol narration describes an idealised sequential trace of execution whereas the principals act concurrently.

- $A \rightarrow B$: *M* actually means
 - (i) A asynchronously sends M towards B,
 - (ii) B receives some message

A protocol narration does not explicitly state the initial knowledge and what is to be generated freshly during a protocol run.

Principals act concurrently

A protocol narration describes an idealised sequential trace of execution whereas the principals act concurrently.

- $A \rightarrow B$: *M* actually means
 - (i) A asynchronously sends M towards B,
 - (ii) *B* receives some message (intended to be *M*)

Principals perform on-reception checks

(iii) *B* checks that the message it just received has the expected properties.
State explicitly the assumptions

A protocol narration does not explicitly state the initial knowledge and what is to be generated freshly during a protocol run.

A, S share k_{AS} B, S share k_{BS} A generates n_A ; B generates n_B ; S generates k_{AB} ; $A \rightarrow B : (A \cdot n_A)$; $B \rightarrow S : (B \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot (n_A \cdot n_B)))$; $S \rightarrow A : (\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_A \cdot n_B)) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))$; $A \rightarrow B : (\operatorname{Enc}_{k_{AS}}^{s}(A \cdot k_{AB}) \cdot \operatorname{Enc}_{k_{AB}}^{s}n_B)$

< □ > < @ > < E > < E > E = 9000

Current knowledge

$\{A, B, S, k_{AS}, n_A\}$

 $\frac{expected}{(\mathsf{Enc}^{s}_{k_{AS}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B})) \cdot \mathsf{Enc}^{s}_{k_{BS}}(A \cdot k_{AB}))}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Current knowledge

$\{A, B, S, k_{AS}, n_A\}$

★ ■ ▶ ★ ■ ▶ ■ ■ • • • • • •

Current knowledge

$\{A, B, S, k_{AS}, n_A\}$

expected	actual
$(\operatorname{Enc}_{k_{AS}}^{\mathrm{s}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B})) \cdot \operatorname{Enc}_{k_{BS}}^{\mathrm{s}}(A \cdot k_{AB}))$	X

< 글 ▶ < 글 ▶ ∃ 글 ♡ < @

Image: A matrix

Current knowledge

$\{A, B, S, k_{AS}, n_A\}$

expected	actual
$(Enc^{s}_{k_{AS}}((B, k_{AB}), (n_{A}, n_{B})), Enc^{s}_{k_{BS}}(A, k_{AB}))$	X
$\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B}))$	$\pi_1(\mathbf{x})$
$\operatorname{Enc}_{k_{BS}}^{s}(A.k_{AB})$	$\pi_2(\mathbf{x})$

★ E ► ★ E ► E = 9 < 0</p>

Current knowledge

$\{A, B, S, k_{AS}, n_A\}$

expected	actual
$(\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B})) \cdot \operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB}))$	X
$\operatorname{Enc}_{k_{AS}}^{s}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B}))$	$\pi_1(x)$
$\operatorname{Enc}_{k_{BS}}^{s}(A \cdot k_{AB})$	$\pi_2(x)$
$((B, \widetilde{k}_{AB}). (n_A. n_B))$	$\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_{1}(x)$

토▶▲토▶ 토|티 ���♡

Current knowledge

 $\{A, B, S, k_{AS}, n_A\}$

expected	actual
$(\operatorname{Enc}_{k_{AS}}^{\mathrm{s}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B})) \cdot \operatorname{Enc}_{k_{BS}}^{\mathrm{s}}(A \cdot k_{AB}))$	x
$\operatorname{Enc}_{k_{AS}}^{\mathrm{s}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B}))$	$\pi_1(x)$
$\operatorname{Enc}_{k_{BS}}^{s}(A, k_{AB})$	$\pi_2(x)$
$((B \cdot \overline{k}_{AB}) \cdot (n_A \cdot n_B))$	$\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_{1}\left(x\right)$
(B. k _{AB})	$\pi_1\left(Dec^{\mathrm{s}}_{k_{\mathcal{AS}}}\pi_1\left(x ight) ight)$
(<i>n</i> _A . <i>n</i> _B)	$\pi_2\left(\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_1\left(x\right)\right)$
В	$\pi_1\left(\pi_1\left(Dec^{\mathrm{s}}_{k_{AS}}\pi_1\left(x\right)\right)\right)$
k _{AB}	$\pi_{2}\left(\pi_{1}\left(Dec_{k_{AS}}^{\mathrm{s}}\pi_{1}\left(x\right)\right)\right)$
n _A	$\pi_{1}\left(\pi_{2}\left(Dec_{k_{AS}}^{\mathrm{s}}\pi_{1}\left(x\right)\right)\right)$
n _B	$\pi_{2}\left(\pi_{2}\left(Dec_{k_{AS}}^{s}\pi_{1}\left(x\right)\right)\right)$

Current knowledge

 $\{A, B, S, k_{AS}, n_A\}$

expected	actual
$(\operatorname{Enc}_{k_{AS}}^{\mathrm{s}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B})) \cdot \operatorname{Enc}_{k_{BS}}^{\mathrm{s}}(A \cdot k_{AB}))$	X
$\operatorname{Enc}_{k_{AS}}^{\mathrm{s}}((B \cdot k_{AB}) \cdot (n_{A} \cdot n_{B}))$	$\pi_1(\mathbf{X})$
$\operatorname{Enc}_{k_{BS}}^{s}(A, k_{AB})$	$\pi_2(\mathbf{x})$
$((B \cdot k_{AB}) \cdot (n_A \cdot n_B))$	$\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_{1}\left(x ight)$
(B. k _{AB})	$\pi_1\left(\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_1\left(x\right)\right)$
(<i>n</i> _A . <i>n</i> _B)	$\pi_2\left(\operatorname{Dec}_{k_{AS}}^{\mathrm{s}}\pi_1\left(x\right)\right)$
В	$\pi_1\left(\pi_1\left(Dec^s_{k_{AS}}\pi_1(x)\right)\right)$
k _{AB}	$\pi_{2}\left(\pi_{1}\left(Dec_{k_{AS}}^{\mathrm{s}}\pi_{1}\left(x\right)\right)\right)$
n _A	$\pi_1\left(\pi_2\left(Dec^{\mathrm{s}}_{k_{\mathrm{AS}}}\pi_1\left(x\right)\right)\right)$
n _B	$\pi_{2}\left(\pi_{2}\left(Dec_{k_{AS}}^{s}\pi_{1}\left(x\right)\right)\right)$

The Yahalom protocol in spi-calculus

$$\begin{array}{l} (\nu k_{AS}, k_{BS}) \\ (\nu n_A) \,\overline{B} \langle (A \cdot n_A) \rangle . A(x_2) . \phi_2 \overline{B} \langle (\pi_2 \left(x_2 \right) . \operatorname{Enc}_{\pi_2 \left(\pi_1 \left(\operatorname{Dec}_{k_{AS}}^s \pi_1 \left(x_2 \right) \right) \right)} \pi_2 \left(\pi_2 \left(\operatorname{Dec}_{k_{AS}}^s \pi_1 \left(x_2 \right) \right) \right) \rangle \rangle . \mathbf{0} \\ | \left(\nu n_B \right) B(x_0) . \phi_0 \overline{S} \langle (B \cdot \operatorname{Enc}_{k_{BS}}^s (A \cdot \left(\pi_2 \left(x_0 \right) \cdot n_B \right) \right) \rangle) . B(x_3) . \phi_3 \mathbf{0} \\ | \left(\nu k_{AB} \right) \\ S(x_1) . \phi_1 \\ \overline{A} \langle (\operatorname{Enc}_{k_{AS}}^s ((B \cdot k_{AB}) \cdot \left(\pi_1 \left(\pi_2 \left(\operatorname{Dec}_{k_{BS}}^s \pi_2 \left(x_1 \right) \right) \right) \right) \cdot \pi_2 \left(\pi_2 \left(\operatorname{Dec}_{k_{BS}}^s \pi_2 \left(x_1 \right) \right) \right))) . \mathbf{0} \\ \end{array}$$

$$\begin{aligned} \phi_{0} &= [A = \pi_{1} (x_{0})] \\ \phi_{1} &= [\pi_{1} \left(\pi_{2} \left(\text{Dec}_{k_{BS}}^{s} \pi_{2} (x_{1}) \right) \right) : \mathbf{M}] \wedge [B = \pi_{1} (x_{1})] \wedge [A = \pi_{1} \left(\text{Dec}_{k_{BS}}^{s} \pi_{2} (x_{1}) \right)] \\ \phi_{2} &= [B = \pi_{1} \left(\pi_{1} \left(\text{Dec}_{k_{AS}}^{s} \pi_{1} (x_{2}) \right) \right)] \wedge [n_{A} = \pi_{1} \left(\pi_{2} \left(\text{Dec}_{k_{AS}}^{s} \pi_{1} (x_{2}) \right) \right)] \\ \phi_{3} &= [A = \pi_{1} \left(\text{Dec}_{k_{BS}}^{s} \pi_{1} (x_{3}) \right)] \wedge [n_{B} = \text{Dec}_{\pi_{2} \left(\text{Dec}_{k_{BS}}^{s} \pi_{1} (x_{3}) \right)} \pi_{2} (x_{3})] \end{aligned}$$

Sébastien Briais (EPFL)

Image: A matrix

Outline

2 An open variant of bisimulation for the spi calculus

3 A formalization in Coq

• Spi calculus is an extension of the pi calculus that incorporates cryptographic primitives .

$$\begin{array}{rcl} P,Q & ::= & \mathbf{0} & \mid a(\mathbf{x}).P \mid \overline{a}\langle u \rangle.P \\ & \mid & [a=b]P \mid (\nu \mathbf{x})P \\ & \mid & P \mid Q \mid P + Q \mid !P \end{array}$$

- Open bisimulation (Sangiorgi) is at the basis of several tools that automatically checks equivalence of pi terms
 e.g. the Mobility Workbench (Victor)
- Can we extend this notion to the spi calculus?

A = A = A = E

• Spi calculus is an extension of the pi calculus that incorporates cryptographic primitives more.

$$P, Q ::= \mathbf{0} | \mathbf{E}(\mathbf{x}).P | \overline{\mathbf{E}}\langle F \rangle.P \\ | \phi P | (\nu \mathbf{x}) P \\ | P | Q | P + Q | !P \\ M, N ::= x | (M.N) | Enc_N^s M \\ E, F ::= ... | \pi_1(E) | \pi_2(E) | Dec_F^s E \\ \phi ::= [E=F] | [E:\mathcal{N}] \\ \end{cases}$$

- Open bisimulation (Sangiorgi) is at the basis of several tools that automatically checks equivalence of pi terms
 e.g. the Mobility Workbench (Victor)
- Can we extend this notion to the spi calculus?

A = A = A = A = A = A = A

• Spi calculus is an extension of the pi calculus that incorporates cryptographic primitives .

$$\begin{array}{rcl} P,Q & ::= & \mathbf{0} & \mid a(x).P \mid \overline{a}\langle u \rangle.P \\ & \mid & [a=b]P \mid (\nu x)P \\ & \mid & P \mid Q \mid P + Q \mid !P \end{array}$$

- Open bisimulation (Sangiorgi) is at the basis of several tools that automatically checks equivalence of pi terms
 e.g. the Mobility Workbench (Victor)
- Can we extend this notion to the spi calculus?

000 E E 4 E + 4 E

• Spi calculus is an extension of the pi calculus that incorporates cryptographic primitives .

$$\begin{array}{rcl} P,Q & ::= & \mathbf{0} & \mid a(x).P \mid \overline{a}\langle u \rangle.P \\ & \mid & [a=b]P \mid (\nu x)P \\ & \mid & P \mid Q \mid P + Q \mid !P \end{array}$$

- Open bisimulation (Sangiorgi) is at the basis of several tools that automatically checks equivalence of pi terms
 e.g. the Mobility Workbench (Victor)
- Can we extend this notion to the spi calculus?

000 E E 4 E + 4 E

The main differences is the way they handle substitutions

A = A = A = A = A = A = A

The main differences is the way they handle substitutions

The main differences is the way they handle substitutions

$$P \xrightarrow{a(x)} P' P' \{\frac{u}{x}\}$$

$$\begin{vmatrix} \\ a(x) \\ Q \xrightarrow{a(x)} Q' Q' \{\frac{u}{x}\}$$
for any name u
Early/Late

The main differences is the way they handle substitutions

The main differences is the way they handle substitutions

Distinctions *D* to prevent from fusing previously extruded names with free names.

The main differences is the way they handle substitutions

for any σ that respects D

Open

The quantification over all substitutions gives a *call-by-need* flavor to the bisimulation. This idea is exploited by the tools which needs to inspect only *most general unifiers*.

O-COMM-L
$$\frac{P \xrightarrow{a(x)}{M} P' \qquad Q \xrightarrow{\overline{b} u} Q'}{P \mid Q \xrightarrow{\tau}{MN[a=b]} P' \{\frac{u}{X}\} \mid Q'}$$

Sébastien Briais (EPFL) PhD Defense 2007. December 17th 18/29

Consider P(M) := (vk) c̄ ⟨Enc^s_kM⟩.0.
 We want P(M) ≈ P(N) since k is private and never revealed.

Consider P(M) := (vk) c̄ ⟨Enc^s_kM⟩.0.
 We want P(M) ≈ P(N) since k is private and never revealed.

$$\begin{array}{c|c} P(M) & \longrightarrow & P(N) \\ \hline \overline{c}(\nu k) \operatorname{Enc}_{k}^{s} M \\ \downarrow \\ \mathbf{0} & \mathbf{0} \end{array}$$

Consider P(M) := (vk) c̄ ⟨Enc^s_kM⟩.0.
 We want P(M) ≈ P(N) since k is private and never revealed.

$$\begin{array}{c|c} P(M) & \longrightarrow & P(N) \\ \hline \overline{c}(\nu k) \operatorname{Enc}_{k}^{s} M \\ \downarrow \\ \mathbf{0} \\ \mathbf{0} \\ \end{array} \qquad \begin{array}{c} \overline{c}(\nu k) \operatorname{Enc}_{k}^{s} N \\ \downarrow \\ \mathbf{0} \\ \end{array}$$

Consider P(M) := (vk) c̄ ⟨Enc^s_kM⟩.0.
 We want P(M) ≈ P(N) since k is private and never revealed.

$$\begin{array}{c|c} P(M) & \longrightarrow & P(N) \\ \hline \overline{c}(\nu k) \operatorname{Enc}_{k}^{s} M \\ \downarrow \\ \mathbf{0} \\ \mathbf{0} \\ \end{array} \qquad \begin{array}{c} \overline{c}(\nu k) \operatorname{Enc}_{k}^{s} N \\ \downarrow \\ \mathbf{0} \\ \end{array}$$

• Bisimulations of the pi calculus are too fine-grained.

Consider P(M) := (vk) c̄ ⟨Enc^s_kM⟩.0.
 We want P(M) ≈ P(N) since k is private and never revealed.

- Bisimulations of the pi calculus are too fine-grained.
- Some pair of messages should be indistinguishable.
- Bisimulations are extended with a data structure that represents the observer knowledge. This has led to various notions of *environment-sensitive* bisimulations (framed, alley, hedged, ...)

Borgström and Nestmann.

Hedge

A hedge $h \in H$ is a finite set of pairs of messages. Intuitively $(M, N) \in h$ means that M and N are indistinguishable.

A hedged bisimulation relates triples (h, P, Q).

Borgström and Nestmann.

$$P(M) := (
u k) \, \overline{c} \langle \operatorname{Enc}_k^{\mathrm{s}} M
angle. \, {f 0}$$
 $P(M) \qquad (c,c) \qquad P(N)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Borgström and Nestmann.

$$P(M) := (\nu k) \overline{c} \langle \operatorname{Enc}_{k}^{s} M \rangle. \mathbf{0}$$

$$P(M) \qquad (c, c) \qquad P(N)$$

$$\overline{c} (\nu k) \operatorname{Enc}_{k}^{s} M \downarrow$$

$$\mathbf{0}$$

Borgström and Nestmann.

Borgström and Nestmann.

Borgström and Nestmann.

ī

Borgström and Nestmann.

The hedge must be consistent det. $O := c(x).c(y).[x = y]\overline{c}\langle \text{fail} \rangle. \mathbf{0}$

▲ 글 ▶ _ 글 | 글

Borgström and Nestmann.

Borgström and Nestmann.

The hedge is analysed after outputs def.

Sébastien Briais (EPFL)

PhD Defense

글 🖌 🖌 글 ト 🖉 글 🖂

Borgström and Nestmann.

$$S_{1}(M) := (\nu k) \overline{c} \langle \operatorname{Enc}_{k}^{s} M \rangle . c(x) . [x = k] \overline{c} \langle k \rangle . \mathbf{0}$$

$$S_{2}(M) := (\nu k) \overline{c} \langle \operatorname{Enc}_{k}^{s} M \rangle . c(x) . \mathbf{0}$$

$$\overline{c} (\nu k) \operatorname{Enc}_{k}^{s} M \left| \begin{array}{c} (c, c) & S_{2}(M) \\ \hline \overline{c} (\nu k) \operatorname{Enc}_{k}^{s} M \right| \\ c(x) \right| \\ (\operatorname{Enc}_{k}^{s} M, \operatorname{Enc}_{k}^{s} M) \\ c(x) \right| \\ [x = k] \mathbf{0} \\ \mathbf{0}$$

★ E ▶ ★ E ▶ E = 9 < 0<</p>
Hedged bisimulation .

Borgström and Nestmann. $S_1(M) := (\nu k) \,\overline{c} \langle \operatorname{Enc}_k^s M \rangle . c(x) . [x = k] \,\overline{c} \langle k \rangle . \mathbf{0}$ $S_2(M) := (\nu k) \overline{c} \langle \operatorname{Enc}_k^s M \rangle . c(x) . \mathbf{0}$ $S_1(M)$ (C, C) $S_2(M)$ $\overline{c}(\nu k) \operatorname{Enc}_k^{\mathrm{s}} M$ $\overline{c}(\nu k) \operatorname{Enc}_k^{\mathrm{s}} M$ $(Enc_k^s M, Enc_k^s M)$ c(x)c(x) $[x=k]\mathbf{0}$

The possible pairs of input messages are constructed using the current knowledge and possibly some *fresh names* det.

Sébastien Briais (EPFL)

PhD Defense

2007, December 17th 20 / 29

Delaying instantiation of input variables

• Which names are subjects to substitutions?

- Input variables.
- What are the possible objects of substitutions?
 - Messages constructed using the knowledge available at the moment of the input and possibly some fresh names.
- A variable dynamically typed as a name is not replaced by a compound message **IIIS**.

Delaying instantiation of input variables

- Which names are subjects to substitutions?
 - Input variables.
- What are the possible objects of substitutions?
 - Messages constructed using the knowledge available at the moment of the input and possibly some fresh names.
- A variable dynamically typed as a name is not replaced by a compound message **IIIS**.

000 E E 4 E + 4 E

Delaying instantiation of input variables

- Which names are subjects to substitutions?
 - Input variables.
- What are the possible objects of substitutions?
 - Messages constructed using the knowledge available at the moment of the input and possibly some fresh names.
- A variable dynamically typed as a name is not replaced by a compound message **LTS**.

000 E E 4 E + 4 E

Delaying instantiation of input variables

- Which names are subjects to substitutions?
 - Input variables.
- What are the possible objects of substitutions?
 - Messages constructed using the knowledge available at the moment of the input and possibly some fresh names.
- A variable dynamically typed as a name is not replaced by a compound message <a>[115].

Hence the form of S-environments $se = (h, v, \prec, (\gamma_l, \gamma_r))$.

A = A = A = A = A = A = A

Delaying instantiation of input variables

- Which names are subjects to substitutions?
 - Input variables.
- What are the possible objects of substitutions?
 - Messages constructed using the knowledge available at the moment of the input and possibly some fresh names.
- A variable dynamically typed as a name is not replaced by a compound message **LTS**.

Hence the form of S-environments $se = (h, v, \prec, (\gamma_l, \gamma_r))$.

consistency of S-environments

A S-environment is consistent if for any instantiation of input variables, the resulting hedge is consistent.

Symbolic characterisation

- Relies on the definition of a *symbolic LTS* det.
- The idea is to record —without checking— the conditions needed to enable a transition.

$$P \stackrel{\mu}{\mapsto} P'$$

- The symbolic LTS helps to characterise precisely the set of substitutions σ such that Pσ ^μ→ P'.
- Given a symbolic transition P ^μ→_Φ P', there is a finite complete set of solutions of Φ.

Outline

2) An open variant of bisimulation for the spi calculus

A formalization in Coq

토▶▲토▶ 토|티 ���♡

de Bruijn indices

Representation of $a(\mathbf{x})$.[Dec^s_k \mathbf{x} : **M**](νl) $\overline{b}\langle l \rangle$. **0**

$$z y x \cdots I \stackrel{\downarrow}{k} j \cdots c \stackrel{\downarrow}{b} \stackrel{\downarrow}{a} | \\ 0 \stackrel{\lambda}{}_{1} [\text{Dec}_{11}^{s} 0: M] \stackrel{\nu}{}_{2} \overline{3} \langle 0 \rangle. 0$$

de Bruijn indices

Several operations have to be defined to handle de Bruijn indices. more

Example: lift_d(k, t) makes room for k new binders in t

★ E ► ★ E ► E = 9 < 0</p>

de Bruijn indices

In practise:

- 5 operations on indices, 6 types (names, messages, ...)
- about 60 useful facts relate these operations
- not scalable and tedious to define and prove several times the same operations/facts

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

de Bruijn indices

Instead

- define on names
- Iift to other types

Abstracting the labelled transition system

- There are several LTS to define.
- Some properties are shared (e.g. structural congruence preserves the transitions)
- These LTS all follow the same pattern.
- Instead of defining each LTS separately, we make a functor and thus defer the definition of the semantics to the definitions of the semantics of actions.

Abstracting the labelled transition system

We rely on a set of actions A and several functions to manipulate them:

- mkSil : \mathcal{A} (silent)
- mkInp : $\boldsymbol{E} \to \mathcal{A} \cup \{\bot\}$ (input)
- mkOutp : $\boldsymbol{E} \times \boldsymbol{E} \rightarrow (\mathcal{A} \times \boldsymbol{E}) \cup \{\bot\}$ (output)
- mkRes : $\mathcal{A} \rightarrow \mathcal{A} \cup \{\bot\}$ (restriction)
- mklf : $\mathbf{F} \times \mathcal{A} \rightarrow \mathcal{A} \cup \{\bot\}$ (guard)
- mkInt : $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \cup \{\bot\}$ (interact)

A = A = A = A = A = A = A

Abstracting the labelled transition system

We then define a parametrised LTS.

INPUT $\frac{\text{mkInp}(E) = \alpha \in \mathcal{A}}{E\lambda . P \xrightarrow{\alpha} \lambda . P} \qquad \text{OUTPUT} \quad \frac{\text{mkOutp}(E, F) = (\alpha, M) \in \mathcal{A} \times E}{\overline{E} \langle F \rangle . P \xrightarrow{\alpha} \langle M \rangle P}$ $\text{CLOSE-L} \quad \frac{P \xrightarrow{\alpha} F}{P \mid Q \xrightarrow{\gamma} F \bullet C} \qquad \text{mkInt}(\alpha, \beta) = \gamma \in \mathcal{A}}{P \mid Q \xrightarrow{\gamma} F \bullet C}$

Overview of the formalization

- Monadic pi calculus
- Pi LTS
- Spi calculus
- Hedges and their properties
- Spi LTS: standard, with type constraints, symbolic and their properties
- Crash test: result about structural congruence
- Late hedged bisimulation, correctness of up-to techniques
- Small examples of bisimulations

000 E E 4 E + 4 E

Conclusion

- A formal semantics for protocol narrations.
 - A rigorous translation into spi calculus.
- An open style definition of bisimulation for the spi calculus.
 - It is a sound proof technique.
 - It is an extension of open bisimulation of the pi calculus.
 - Its projection down to the pi calculus has enabled us to better understand the original notion of open bisimulation.
 - A symbolic characterisation as a promising first step towards mechanisation.
- A formalization in a proof assistant.
 - Very useful while elaborating the theory.
 - Already a framework to reason formally about cryptographic protocols in Coq.

Future work

- Study furthermore open hedged bisimilarity.
 - Congruence properties.
 - Mechanisation.
- Complete the formalization in Coq.
 - Realise the dream of having a correct-by-construction equivalence checker for the spi calculus.
 - Define smart tactics for reasoning directly in Coq (e.g. interface with the tool that handles the decidable fragment)

Future work

- Study furthermore open hedged bisimilarity.
 - Congruence properties.
 - Mechanisation.
- Complete the formalization in Coq.
 - Realise the dream of having a correct-by-construction equivalence checker for the spi calculus.
 - Define smart tactics for reasoning directly in Coq (e.g. interface with the tool that handles the decidable fragment)
- Demos?

000 E E 4 E + 4 E

The end.

Sébastien Briais (EPFL)

PhD Defense

<ロト < 部ト < 注ト < 注ト 三 = つ Q (~ 2007, December 17th 29 / 29

The spi calculus back

- Countably infinite set of *names*.
 Communication channels, nonces, atomic data, ...
- Messages

 $M, N ::= x \mid (M \cdot N) \mid \operatorname{Enc}_N^{\mathrm{s}} M$

Expressions

$$\begin{array}{rrrr} E,F & ::= & x \mid (E \cdot F) \mid \mathsf{Enc}_F^{\mathrm{s}} E \\ & \mid & \pi_1(E) \mid \pi_2(E) \mid \mathsf{Dec}_F^{\mathrm{s}} E \end{array}$$

Guards

$$\phi ::= [E = F] \mid [E : \mathcal{N}]$$

B A B A B B B O Q O

Agents

Processes $\begin{array}{rcl} P, Q & ::= & \mathbf{0} \mid E(\mathbf{x}).P \mid \overline{E}\langle F \rangle.P \\ & \mid & \phi P \mid (\nu \mathbf{x})P \\ & \mid & P \mid Q \mid P + Q \mid !P \end{array}$ $\begin{array}{rcl} A & ::= & P \\ & \mid & (\mathbf{x})P \\ & \mid & (\nu \widetilde{\mathbf{z}}) \langle M \rangle P & \text{where } \{ \widetilde{\mathbf{z}} \} \subseteq \mathsf{n}(M) \end{array}$

Sébastien Briais (EPFL)

PhD Defense

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● 2007. December 17th 31 / *

Labelled transitions system **back**

Late semantics

INPUT
$$\frac{\mathbf{e}_{c}(E) = a \in \mathcal{N}}{E(x).P \xrightarrow{a} (x)P}$$
 OUTPUT $\frac{\mathbf{e}_{c}(E) = a \in \mathcal{N} \quad \mathbf{e}_{c}(F) = M \in \mathbf{M}}{\overline{E}\langle F \rangle.P \xrightarrow{\overline{a}} \langle M \rangle P}$

CLOSE-L
$$\frac{P \xrightarrow{a} F \qquad Q \xrightarrow{\overline{a}} C}{P \mid Q \xrightarrow{\tau} F \bullet C}$$
 IFTHEN $\frac{P \xrightarrow{\mu} P'}{\phi P \xrightarrow{\mu} P'} \mathbf{e}(\phi) = \mathbf{true}$

$$\operatorname{Res} \frac{P \xrightarrow{\mu} A}{(\nu z) P \xrightarrow{\mu} (\nu z) A} z \notin \operatorname{n}(\mu) \qquad \qquad \operatorname{Par-L} \frac{P \xrightarrow{\mu} A}{P | Q \xrightarrow{\mu} A | Q}$$

+ SUM, REP- et ALPHA.

Evaluation of expressions and guards Deck

• Expressions:

$$\begin{array}{rcl} \mathbf{e}_{c}(a) &:= a \\ \mathbf{e}_{c}(Enc_{F}^{s}E) &:= Enc_{N}^{s}M & \text{if } \mathbf{e}_{c}(E) = M \in \mathbf{M} \\ & \text{and } \mathbf{e}_{c}(F) = N \in \mathbf{M} \\ \mathbf{e}_{c}((E_{1} \cdot E_{2})) &:= (M_{1} \cdot M_{2}) & \text{if } \mathbf{e}_{c}(E_{1}) = M_{1} \in \mathbf{M} \\ & \text{and } \mathbf{e}_{c}(E_{2}) = M_{2} \in \mathbf{M} \\ \mathbf{e}_{c}(Dec_{F}^{s}E) &:= M & \text{if } \mathbf{e}_{c}(E) = Enc_{N}^{s}M \in \mathbf{M} \\ & \text{and } \mathbf{e}_{c}(F) = N \in \mathbf{M} \\ \mathbf{e}_{c}(\pi_{1}(E)) &:= M_{1} & \text{if } \mathbf{e}_{c}(E) = (M_{1} \cdot M_{2}) \in \mathbf{M} \\ \mathbf{e}_{c}(\pi_{2}(E)) &:= M_{2} & \text{if } \mathbf{e}_{c}(E) = (M_{1} \cdot M_{2}) \in \mathbf{M} \\ \mathbf{e}_{c}(E) &:= \bot & \text{otherwise} \end{array}$$

• Guards:

$$\begin{array}{rcl} \mathbf{e}([E=F]) & := & \mathrm{true} & \mathrm{si} \ \mathbf{e}_{\mathrm{c}}(E) = \mathbf{e}_{\mathrm{c}}(F) = M \in \mathbf{M} \\ \mathbf{e}([E:\mathcal{N}]) & := & \mathrm{true} & \mathrm{si} \ \mathbf{e}_{\mathrm{c}}(E) = a \in \mathcal{N} \\ \mathbf{e}(\phi) & := & \mathrm{false} & \mathrm{otherwise} \end{array}$$

Late hedged bisimulation **Deck**

A symmetric consistent hedged relation \mathcal{R} is a *(strong) late hedged bisimulation* if whenever $(h, P, Q) \in \mathcal{R}$, we have that

• if $P \xrightarrow{\tau} P'$ then

there exists Q' such that $Q \xrightarrow{\tau} Q'$ and $(h, P', Q') \in \mathcal{R}$

if
$$P \xrightarrow{a} (x)P'$$
 (with $x \notin n(\pi_1(h))$)
and $(a, b) \in h$ then

there exist *y* and *Q*' such that $Q \xrightarrow{b} (y)Q'$ (with $y \notin n(\pi_2(h))$) and for all *B* and (M, N) such that $h \vdash_B (M, N)$ we have $(h \cup B, P' \{ \stackrel{M}{/_x} \}, Q' \{ \stackrel{N}{/_y} \}) \in \mathcal{R}$.

Solution if P ^ā/_→ (ν c̃) ⟨M⟩P' (with {c̃} ∩ n(π₁(h)) = ∅) and (a, b) ∈ h then there exist d̃, Q' and N such that Q ^b/_→ (ν d̃) ⟨N⟩Q' (with {d̃} ∩ n(π₂(h)) = ∅) and (𝒯(h ∪ {(M, N)}), P', Q') ∈ 𝔅.

Synthesis of a hedge and possible inputs

Synthesis of a hedge

The synthesis S(h) is the smallest set that satisfies

$$\begin{split} & \text{SYN-INC} \ \frac{(M,N) \in h}{(M,N) \in \mathcal{S}(h)} \\ & \text{SYN-ENC-S} \ \frac{(M_1,N_1) \in \mathcal{S}(h) \qquad (M_2,N_2) \in \mathcal{S}(h)}{(\text{Enc}_{M_2}^s M_1, \text{Enc}_{N_2}^s N_1) \in \mathcal{S}(h)} \\ & \text{SYN-PAIR} \ \frac{(M_1,N_1) \in \mathcal{S}(h) \qquad (M_2,N_2) \in \mathcal{S}(h)}{((M_1 \cdot M_2), (N_1 \cdot N_2)) \in \mathcal{S}(h)} \end{split}$$

Synthesis of a hedge and possible inputs ••••

Possible inputs

Let $h \in H$, $(M, N) \in M \times M$

Let $B \subseteq \mathcal{N} \times \mathcal{N}$ a consistent hedge such that

•
$$\pi_1(B) \cap \mathsf{n}(\pi_1(h)) = \emptyset$$

•
$$\pi_2(B) \cap \mathsf{n}(\pi_2(h)) = \emptyset$$

i.e. the names of *B* are fresh component-wise w.r.t. those of *h*. We write $h \vdash_B (M, N)$ if

• $\forall (b_1, b_2) \in B : b_1 \in n(M) \lor b_2 \in n(N)$

•
$$(M, N) \in \mathcal{S}(h \cup B)$$

Analysis of a hedge and irreducibles ••••

Analysis

The analysis $\mathcal{A}(h)$ is the smallest hedge that is closed by analz(·). ANA-INC $\frac{(M, N) \in h}{(M, N) \in \text{analz}(h)}$

ANA-DEC-S
$$\frac{(\mathsf{Enc}_{M_2}^{s}M_1,\mathsf{Enc}_{N_2}^{s}N_1)\in \mathrm{analz}(h)}{(M_1,N_1)\in \mathrm{analz}(h)} \quad (M_2,N_2)\in \mathcal{S}(h)$$

ANA-FST
$$rac{((M_1 \cdot M_2), (N_1 \cdot N_2)) \in \mathrm{analz}(h)}{(M_1, N_1) \in \mathrm{analz}(h)}$$

ANA-SND $\frac{((M_1 . M_2), (N_1 . N_2)) \in \text{analz}(h)}{(M_2, N_2) \in \text{analz}(h)}$

Analysis of a hedge and irreducibles ••••

Irreducibles

 $\mathcal{I}(h)$ is the smallest hedge such that $\mathcal{S}(\mathcal{I}(h)) = \mathcal{S}(\mathcal{A}(h))$.

Definition

A hedge *h* is irreducible iff $\mathcal{I}(h) = h$.

Consistency of a hedge back

Consistency

A hedge *h* is consistent iff: Whenever $(M, N) \in h$

•
$$M \in \mathcal{N} \iff N \in \mathcal{N}$$

• whenever $(M', N') \in h : M = M' \iff N = N'$

•
$$M \neq (M_1 \cdot M_2)$$
 and $N \neq (N_1 \cdot N_2)$

• if
$$M = \operatorname{Enc}_{M_2}^{\mathrm{s}} M_1$$
 then $(M_2, N_2) \notin \mathcal{S}(h)$

• if
$$N = \operatorname{Enc}_{N_2}^{\mathrm{s}} N_1$$
 then $(M_2, N_2) \notin \mathcal{S}(h)$

Lemma

A consistent hedge is irreducible.

S-environments **back**

Definition (S-environment)

A S-environment is a quadruple $se = (h, v, \prec, (\gamma_l, \gamma_r))$ where $h \in H$, $v \subseteq \mathcal{N} \times \mathcal{N}$ is a consistent hedge, $\prec \subseteq h \times v$, $\gamma_l \subseteq \pi_1(v)$ and $\gamma_r \subseteq \pi_2(v)$.

Hedge available

The *hedge available* to $(x, y) \in v$ according to \prec is defined by $se|_{(x,y)} := \{(M, N) \in h \mid (M, N) \prec (x, y)\}.$

Concrete hedge

The *concrete hedge* of *se* is $\mathfrak{H}(se) := h \cup v$.

Respectful substitutions **Dark**

Definition (Respectful substitutions)

Let (σ, ρ) be a pair of substitutions, $B \subseteq \mathcal{N} \times \mathcal{N}$ a consistent hedge and $se = (h, v, \prec, (\gamma_l, \gamma_r))$ a S-environment. We say that (σ, ρ) respects se with B — written $(\sigma, \rho) \triangleright_B se$ — if

$$1 supp(\sigma) \subseteq \pi_1(v)$$

2 supp
$$(\rho) \subseteq \pi_2(v)$$

③
$$\forall$$
(*b*₁, *b*₂) ∈ *B* : *b*₁ ∈ n(σ (π ₁(*ν*))) ∨ *b*₂ ∈ n(ρ (π ₂(*ν*)))

$$(\mathbf{x}, \mathbf{y}) \in \mathbf{v} : (\mathbf{x}\sigma, \mathbf{y}\rho) \in \mathcal{S}(\mathcal{I}(\mathbf{se}|_{(\mathbf{x}, \mathbf{y})}(\sigma, \rho) \cup \mathbf{B}))$$

$$0 \forall \mathbf{x} \in \gamma_{\mathbf{l}} : \mathbf{x}\sigma \in \mathcal{N}$$

A symmetric consistent open hedged relation \mathcal{R} is an *open hedged bisimulation* if for all $(se, P, Q) \in \mathcal{R}$, for all σ, ρ and B such that $(\sigma, \rho) \triangleright_B se$,

internal communications if $P\sigma \xrightarrow{\tau}_{S_1} P'$ then there exist Q' and S_2 such that $Q\rho \xrightarrow{\tau}_{S_2} Q'$ and $(se_B^{(\sigma,\rho)} + (S_1, S_2), P', Q') \in \mathcal{R}$

A symmetric consistent open hedged relation \mathcal{R} is an *open hedged bisimulation* if for all $(se, P, Q) \in \mathcal{R}$, for all σ, ρ and B such that $(\sigma, \rho) \triangleright_B se$,

inputs

if
$$P\sigma \xrightarrow[S_1]{} (x)P'$$
 (with $x \notin n(\pi_1(\mathfrak{H}(se_B^{(\sigma,\rho)}))))$
and $(a, b) \in S(\mathcal{I}(\mathfrak{H}(se_B^{(\sigma,\rho)})))$ then
there exist y, Q' and S_2 such that $Q\rho \xrightarrow[S_2]{} (y)Q'$ (with
 $y \notin n(\pi_2(\mathfrak{H}(se_B^{(\sigma,\rho)}))))$
and $(se_B^{(\sigma,\rho)} + i(x, y) + c(S_1, S_2), P', Q') \in \mathcal{R}$

A symmetric consistent open hedged relation \mathcal{R} is an *open hedged bisimulation* if for all $(se, P, Q) \in \mathcal{R}$, for all σ, ρ and B such that $(\sigma, \rho) \triangleright_B se$,

outputs

$$\begin{array}{l} \text{if } P\sigma \stackrel{\overline{a}}{\underset{S_{1}}{\longrightarrow}} (\nu \tilde{c}) \langle M \rangle P' (\text{with } \{\tilde{c}\} \cap n(\pi_{1}(\mathfrak{H}(se_{B}^{(\sigma,\rho)}))) = \emptyset) \\ \text{and } (a,b) \in \mathcal{S}(\mathcal{I}(\mathfrak{H}(se_{B}^{(\sigma,\rho)}))) \text{ then} \\ \text{there exist } \tilde{d}, N, Q' \text{ and } S_{2} \text{ such that } Q\rho \stackrel{\overline{b}}{\underset{S_{2}}{\longrightarrow}} (\nu \tilde{d}) \langle N \rangle Q' \\ (\text{with } \{\tilde{d}\} \cap n(\pi_{2}(\mathfrak{H}(se_{B}^{(\sigma,\rho)}))) = \emptyset) \\ \text{and } (se_{B}^{(\sigma,\rho)} +_{o}(M,N) +_{c}(S_{1},S_{2}), P', Q') \in \mathcal{R} \end{array}$$

A LTS that collects type constraints **back**

NC-SILENT
$$\frac{}{\tau \cdot P \stackrel{\tau}{\underset{\emptyset}{\longrightarrow}} P}$$
 NC-INPUT $\frac{\mathbf{e}_{c}(E) = a \in \mathcal{N}}{E(x) \cdot P \stackrel{a}{\underset{\{a\}}{\longrightarrow}} (x)P}$
NC-OUTPUT $\frac{\mathbf{e}_{c}(E) = a \in \mathcal{N} \quad \mathbf{e}_{c}(F) = M \in \mathbf{M}}{\overline{E} \langle F \rangle \cdot P \stackrel{a}{\underset{\{a\}}{\longrightarrow}} \langle M \rangle P}$
NC-IFTHEN $\frac{P \stackrel{\mu}{\underset{S \cup \mathbf{n} c(\phi)}{\longrightarrow}} A}{\phi P \stackrel{\mu}{\underset{S \cup \mathbf{n} c(\phi)}{\longrightarrow}} A} \mathbf{e}(\phi) = \mathbf{true}$

where $\mathbf{nc}([E:\mathcal{N}]) := \{\mathbf{e}_{\mathbf{c}}(E)\}\$ and $\mathbf{nc}([E=F]) := \emptyset$.

. .
Properties **Dack**

Theorem

The two semantics are equivalent:

• If P
$$\xrightarrow{\mu}$$
 A there exists $S \subseteq \mathcal{N}$ such that P $\underset{S}{\xrightarrow{\mu}}$ A.

$$If P \stackrel{\mu}{\hookrightarrow} A then P \stackrel{\mu}{\to} A.$$

Lemma

If $P \stackrel{\mu}{\underset{S}{\hookrightarrow}} A$ and $\sigma : \mathcal{N} \to \mathbf{M}$ is a substitution such that $S\sigma \subseteq \mathcal{N}$ then $P\sigma \stackrel{\mu\sigma}{\underset{S\sigma}{\hookrightarrow}} A\sigma.$

Appendix

A symbolic LTS (back)

S-GUARD
$$\frac{P \stackrel{\mu}{\leftarrow} A}{\phi P \stackrel{\mu}{\leftarrow} e^{k} \phi A}$$
S-INPUT
$$\frac{P \stackrel{\mu}{\leftarrow} A}{E(x) \cdot P \stackrel{\mu}{\leftarrow} e^{a(E)} (x) P}$$
S-OUTPUT
$$\frac{\overline{E}(F) \cdot P \stackrel{\overline{e_{a}(E)}}{F(E:\mathcal{N}), [F:M]} \langle e_{a}(F) \rangle P}$$
S-CLOSE-L
$$\frac{P \stackrel{E}{\leftarrow} F}{P \mid Q \stackrel{\overline{E}}{\leftarrow} e^{x} f} Q \stackrel{\overline{E'}}{e^{2}} C}{F \mid Q \stackrel{\overline{E'}}{(E=E']} e^{x} \phi f} \bullet C}$$
S-RES
$$\frac{P \stackrel{\mu}{\leftarrow} A}{(\nu z) P \stackrel{\mu}{\leftarrow} (\nu z) A} z \notin n(\mu)$$

$$\frac{P e^{\mu}}{\nu_{+}(z,c)} (\nu z) A} z \notin n(\mu)$$
Converted by the set of the set of

Transition constraints **back**

- A transition constraint has the form (νž) Φ where Φ is a finite set of guards and ž is a finite set of names that occur in Φ, i.e. {ž} ⊆ n(Φ)
- Composition of constraints:
 - ► Conjunction of $c_1 = (\nu \tilde{z_1}) \Phi_1$ and $c_2 = (\nu \tilde{z_2}) \Phi_2$ where $\{\tilde{z_1}\} \cap \{\tilde{z_2}\} = \emptyset$, $\{\tilde{z_1}\} \cap fn(c_2) = \{\tilde{z_2}\} \cap fn(c_1) = \emptyset$

$$\boldsymbol{c_1} \& \boldsymbol{c_2} := (\nu \tilde{z_1} \tilde{z_2}) (\Phi_1 \cup \Phi_2)$$

► Restriction of name x.
If
$$c = (\nu \tilde{z}) \Phi$$
 and $x \notin {\tilde{z}}$:
 $\nu_+(x, c) := (\nu x \tilde{z}) \Phi$ if $x \in fn(c)$
 $:= c$ otherwise

Abstract evaluation **Dack**

Abstract evaluation of expressions:

$$\begin{array}{rcl} \mathbf{e}_{a}(a) &:= a & \text{if } a \in \mathcal{N} \\ \mathbf{e}_{a}(\text{Enc}_{F}^{s}E) &:= & \text{Enc}_{\mathbf{e}_{a}(F)}^{s}\mathbf{e}_{a}(E) \\ \mathbf{e}_{a}((E \cdot F)) &:= & (\mathbf{e}_{a}(E) \cdot \mathbf{e}_{a}(F)) \\ \mathbf{e}_{a}(\text{Dec}_{F}^{s}E) &:= & E_{1} & \text{if } \mathbf{e}_{a}(E) = \text{Enc}_{E_{2}}^{s}E_{1} \\ & & \text{Dec}_{\mathbf{e}_{a}(F)}^{s}\mathbf{e}_{a}(E) & \text{otherwise} \\ \mathbf{e}_{a}(\pi_{1}(E)) &:= & E_{1} & \text{if } \mathbf{e}_{a}(E) = (E_{1} \cdot E_{2}) \\ & & \pi_{1}\left(\mathbf{e}_{a}(E)\right) & \text{otherwise} \\ \mathbf{e}_{a}(\pi_{2}(E)) &:= & E_{2} & \text{if } \mathbf{e}_{a}(E) = (E_{1} \cdot E_{2}) \\ & & \pi_{2}\left(\mathbf{e}_{a}(E)\right) & \text{otherwise} \end{array}$$

▶ 프네님

12 N A 12

Properties **Dack**

Define $>_{o}$ as being the smallest precongruence on expressions that satisfies:

- $\pi_1 \left((E_1 \, . \, E_2) \right) >_{\mathrm{o}} E_1$ if $\mathbf{e}_{\mathsf{c}}(E_2) \neq \bot$
- $\pi_2((E_1 . E_2)) >_o E_2$ if $\mathbf{e}_c(E_1) \neq \bot$
- $\mathsf{Dec}^{\mathrm{s}}_{E_2}\mathsf{Enc}^{\mathrm{s}}_{E_2}{\mathcal E}_1 >_{\mathrm{o}} {\mathcal E}_1$ if ${\boldsymbol{e}}_{\mathsf{c}}({\mathcal E}_2)
 eq \bot$

Extend this relation to agents in:

- $A >_{o}^{=} B$ (A, B are concrete agents)
- $A >_{o}^{e} B$ (*A* is symbolic, *B* is concrete)

(two ways to handle concretions)

Properties **back**

continued

Theorem

Let $P, Q \in \mathbf{P}$ and assume that $P >_o Q$. If $P \stackrel{\mu}{\hookrightarrow}_{S} A$ then $Q \stackrel{\mu}{\hookrightarrow}_{S} B$ and $A >_o^= B$ If $Q \stackrel{\mu}{\hookrightarrow}_{S} B$ then $P \stackrel{\mu}{\hookrightarrow}_{S} A$ and $A >_o^= B$

Theorem

Let $P, Q \in \mathbf{P}$ and $\sigma : \mathcal{N} \to \mathbf{M}$ a substitution. If $P \xrightarrow[]{\mu_s}{c} A$ and $\mathbf{e}(c\sigma) = \mathbf{true}$ then $P\sigma \xrightarrow[]{\mathbf{e}_c(\mu_s\sigma)}{\mathbf{nc}(c\sigma)} B$ with $A\sigma >_0^{\mathbf{e}} B$ If $P\sigma \xrightarrow[]{\mathcal{H}}{S} B$ then $P \xrightarrow[]{\mu_s}{c} A$ with $\mathbf{e}(c\sigma) = \mathbf{true}, \mathbf{nc}(c\sigma) = S$, $\mathbf{e}_c(\mu_s\sigma) = \mu$ and $A\sigma >_0^{\mathbf{e}} B$

Appendix

Operations on de Bruijn indices 🔤

- Parametrised by the binding depth d
- mem_d(i, t) returns true iff i is free in t
- lift_d(k, t) makes room for k new binders in t
 Used in parallel composition of an agent and a process:

$$\begin{array}{rcl} (\lambda.P) \mid Q & := & \lambda.(P \mid \mathsf{lift}_0(1,Q)) \\ (\nu^k \langle F \rangle P) \mid Q & := & \nu^k \langle F \rangle (P \mid \mathsf{lift}_0(k,Q)) \end{array}$$

For instance:

Operations on de Bruijn indices 🔤

continued

- swap_d(k, t) makes a circular permutation of the k first indices in t
- low_d(t) removes the first index
- Used in restriction of an agent:

$$\begin{array}{lll} \boldsymbol{\nu}(\lambda.P) &:= & \lambda.\nu\, {\rm swap}_0(1,P) \\ \boldsymbol{\nu}(\nu^k \langle F \rangle P) &:= & \nu^{k+1} \langle F \rangle P & \text{if } {\rm mem}_k(0,F) = {\rm true} \\ &:= & \nu^k \langle {\rm low}_k(F) \rangle \nu\, {\rm swap}_0(k,P) & \text{otherwise} \end{array}$$

Isubst_d(k, E, t) substitutes the |E| first indices with the corresponding expression of E in t. The k first indices are bound in E.

$$(\lambda.P) \bullet (\nu^k \langle F \rangle Q) := \nu^k (\text{lsubst}_0(k, F, P) | Q)$$