MOBILE OBJECTS “MUST” MOVE SAFELY

Sébastien Briais
ENS Lyon, France
Sebastien.Briais@ens-lyon.fr

Uwe Nestmann
EPFL, Switzerland
Uwe.Nestmann@epfl.ch

Abstract

1.

djeblik is a lexically-scoped, object-based calculus that represents a distribu-
tion-free subset of the LAN-based programming language Oblig.slihegate
operation on djeblik-objects, which is the abstractiomofration on Oblig-
objects, is a combined operation derived from the more primitive operations
cloningandaliasing In short, surrogation on an object turns the object into an
alias for a clone of itself; it amounts to migration when the original and the clone
reside on different distribution sites.

In previous work, we studied the conditions under which surrogation is safe,
i.e., transparent to object clients. To this aim, we developed two complementary
formal descriptions of @jeblik's semantics, one as an operational semantics on
djeblik-configurations, and another one by translation into a process calculus.
We used the former to explain typical (mis-)behaviors of Jjeblik programs, but
only the latter to perform rigorous correctness proofs w.r.t. may-equivalence.

In this paper, we offer new formal proofs, now based on the operational se-
mantics of Jjeblik, making the results as well as the proofs accessible also to
readers not familiar with process calculi. Furthermore, we strengthen our former
results by using, in addition to may-equivalence, the much more distinguishing
notion of must-equivalence.

Introduction

This paper addresses, like previous works [NHKMO01, MKNOO], the prob-
lem of expressing the mobility of objects in lexically-scoped languages like
Oblig [Car95] by means of cloning and aliasing. In this sense, it is to be seen
as a natural continuation of these works.

The title of this paper is intended to emphasize two different messages.
Firstly, it stresses the obligation that mobile objects should indeed move in
a safe way, which means that they—while moving—must not be disturbed by
any other concurrent activity and that they should move without allowing their
clients to take notice of it. Secondly, it hints at one of the two main new contri-
butions of this paper, namely the fact that clients cannot observe the difference
between the case in which an object has moved and the case in which it has not
(yet) moved, even not up to “must-equivalence”.

Relevance of the problem. In order to protect objects during migration and
the resulting proxies afterwards, Oblig proposes a blocking strategy (based
on serialization and protection against external modification). This strategy
appears to be necessary for the proposal of mobile objects through cloning
and aliasing. In such settings, the transparency-of-migration problems arise
inevitably, because the blocking strategy also affects the generated proxies.
Thus, our study is not only addressing Oblig, but any language that supports a
blocking strategy for transparent object migration using proxies.

Previous Work. We have studied in great detail the problems of devel-
oping and exploiting formal semantics of languages arising from Oblig. In
[NHKMO1], guided by an implementation of Oblig, we studied four different
operational semantics and formalized safe migration as the following theorem:
in z.ping & z.surrogate we equate (with respect to a large class of program
contexts) the program.ping, which just witnesses the responsiveness: of
with the programe.surrogate, which performs a surrogation operation on

We then ruled out three of the operational semantics due to problems in satisfy-
ing the theorem, but we were not able (yet) to formally prove that our favorite
semantics would indeed satisfy it. In [MKNOO], we then proved the theorem to
hold in our favorite semantics, but only when formalized as a translation into a
suitabler-calculus [Mer00]. Furthermore, due to the character of the standard
proof techniques of the-calculus—some form of weak bisimulation, which is
usually insensitive w.r.t. divergence—we only gave a proof for the safety theo-
rem using the notion of may-equivaler@&?, in which two terms to compare
must exhibit the same may-convergence behavior in all program contexts.

Contribution. This paper provides the missing link between [NHKMO1]
and [MKNOQ]: several previous readers were missing a formal relation be-
tween the operational and the translational semantics just for completing the
understanding of the problem, others were arguing that proofs on translation
would be useless without such a link. Here, instead of establishing a formal
correspondence, we lift some proof ideas from the level of a process calculus
to the level of the operational semantics, we develop further proof techniques

Mobile Objects “Must” Move Safely 3

(partial confluence, path compression) that enable a deeper understanding of
the migration problem, and we strengthen previous results using the more dis-
tinguishing notion of must-equivaleneg™*. Our new proof techniques will

be reusable for other verification tasks, as well.

Outline. 8 2 recalls the necessary syntactic and semantic details of the cal-
culus @jeblik, our basic vehicle to study Obliq. In § 3, we briefly set up the
safety theorem that we are interested in. Finally, § 4 is dedicated to summarize
the highlights of a formal proof of the safety theorem using the operational
semantics and must-equivalence. Full proofs are found in [BriO1].

2. Concurrent Objects with Cloning and Aliasing

Dijeblik is a typed calculus [NHKMO1], but we omit types throughout this
paper to keep the presentation simple. In comparison with Obliq [Car95],
which is a fully-fledged LAN-based programming language, we omit ground
values, data operations, and procedures, we restrict field selection to method
invocation, we restrict multiple cloning to single cloning, we omit flexibility of
object attributes, we replace field aliasing with object aliasing, we omit explicit
distribution, and we omit exceptions and advanced synchronization, so that we
get a feasible, but still non-trivial language.

2.1. Syntax

The setC of @jeblik-terms is generated as shown in Figure 1, wieséhod
labelsl andvariabless, x, y, z are taken from countably infinite sdisandX,
respectively. The remainder of this subsection presents an informal explana-
tion of the semantics of @jeblik terms. Computation follows the call-by-value
evaluation order; its goal is to reduce terms to values, which are run-time enti-
ties that we also call references (cf. Subsection 2.2 for the precise meaning).

Objects. An object record]l;=m;];c; is a finite collection of updatable
named methodg=m;, more generally called fields, for pairwise distinct la-
belsl;. Ina method (s, Z)b, the letters denotes a binder for the self varialsle
and argument variableswithin the bodyb. Moreover, every object in Gjeblik
comes equipped with special methods for cloning, aliasing, surrogation, and
ping, which cannot be overwritten by the update operation.

Method invocatioru.1(¢) with field 1 of the objectz containing the method
¢(s,)b results in the body with the self variables replaced by (a reference
to) the enclosing objeet, and the formal parametetseplaced by (references
to) the actual parametef®f the invocation. Method updatel<m overwrites
the current content of the named fi¢lid objecta with methodm and evaluates
to the modified object. The operatiacione creates an object with the same

a,b,c == [li=mjljes object record
| a.l(¢) method invocation
| a.l=m method update
| a.clone shallow copy
| a.alias(b) object aliasing
| a.surrogate object surrogation
| a.ping object identity
| s,z,y,z variables
|letz=ainb local definition
| fork(a) thread creation
| join{a) thread destruction
mj 1= C(Sj,.fj)bj method

Figure 1. Syntax of @jeblik expressions

fields as the original object and initializes the fields to the same entries as in
the original object. The operationalias(b) replaces object with an alias

to b, written a>>b, regardless of whether is already an alias; ib itself is

an alias, e.gb>c, then we consequently and naturally create an alias chain
a>b>c. After the operatioru.alias(b), requests arriving at are forwarded

to b. The operatiorz.surrogate is the abstraction of migration: by calling

it, objecta is turned into an alias to a clone of itself, which is implemented
by providing a uniform methosurrogate=¢(s)s.alias(s.clone). Like standard
methods, surrogation is forwarded by aliased objects. The operationg is

also implemented by providing a uniform methqdng=¢(s)s. Thus,a.ping
returns the “identity” of an objeat resulting from the evaluation af; note
that, due to aliasing and forwarding, this would be the “identity” of the current
endpoint of an alias chain potentially starting at object

Self-Infliction, Serialization, Protection. Requests for operations on Jje-
blik-objects may appear either (i) somewhere within a method body, or (ii) just
within a let-body, or (iii) at top-level. Thecurrent self of a requesdenotes,

in case (i), the self of its surrounding method declaration; in the other cases, it
is undefined. A request for an @jeblik operatiors&f-inflictedinternal, if it
addresses its current self; otherwise, #x$ernal For instance, the term

[1=¢(s)s.clone].l (1)

leads to an internallone-request. However, not only literal invocations on the
self variables may be internal, but also indirect invocations on expressions that

Mobile Objects “Must” Move Safely 5

evaluate to the object itself may be internal. For instance, also in
let z = [1=¢(s, z)z.clone]in z.1{x) (2)

the callz.clone will be internal when it is finally executed.

In concurrent object-based settings, the invariant that at most one thread at a
time may be active within an object is callsdrialization One way to ensure
serialization is to associatautexesvith objects, which must be locked when a
thread enters an object and released when the thread exits the object. In Obliq,
the variant ofself-serializatiorrequires that the mutex is always acquired for
external operations, but never for internal ones. For instance, the program

letz =[l=¢(s)s.k,k=c¢(s)s]inz.]

will terminate (delivering as a result the identitygf because the internal call
to methodk is permitted. In contrast, the program

letx =[1=¢(s, 2)z.k ,m=c¢(s)s]inlety = [k=¢(s)x.m]in z.1{y)

attempts a mutual recursion between the objecsdy. However, it blocks
the recursive (external) call fromto = for methodm, because the mutexis
already locked by the former call bbn z, which has not yet terminated.

@Dijeblik objects ar@rotectedagainst external modifications in a natural way:
updates, cloning, and aliasing are only allowed if these operations are internal.
For instance, the terms (1) and (2) terminate successfully (with a result), while

let z =[l=¢(s)s]in z.clone

blocks (without result), because thene-request is external.

In summary, operations on Jjeblik objects can be classified according to
protection conditiongnd with respect to theode of actiordenoting the node
where the operation is finally carried out (locally at the initially called node, or
at the endpoint of a chain starting at the called node).

operation protection condition? node of action
cloning, aliasing internal-only local
update internal-only endpoint
invocation, surrogation, ping unconstrained endpoint

Scoping. djeblik offers scope declarations. An expresdin: = a in b first
evaluates:, binding the result ta:;, and then evaluatdswithin the scope of
the new binding. We use the standard inductive definifidn) to denote the
free variables of term with respect to method- and let-binding. @jeblik only
admits non-recursive expressioksz =ainb, i.e., withz ¢ fv(a). Then,

a; b denotedet x = ain b, wherex ¢ fv(b). A terma is closedif fv(a) = 0.

a,b == ... | v | wait

Figure 2. Syntax of Djeblik run-time expressions

Concurrency. Computational activity takes place withthreads Apart

from the main thread that is started on initialization, new separate threads can
be created by théork command. The terrfork(a) returns a new thread iden-
tifier to denote the thread evaluating The result of gork’ed computation is
grabbed by thgoin command. Ifa evaluates to a thread identifier, thein (a)
potentially blocks until that thread finishes and returns the thread’s result, or
blocks forever, if goin on thread: was already performed earlier.

2.2. Operational Semantics

The semantics performs local changes on global run-tiordigurations
which are mappings from referencescs R to run-time entities. More pre-
cisely, a configuratiol maps task referenceésc R to tasks7Z, and object
references € Ro to objectsO (see below). We usdomx (€) to denote
dom(€)NRx for X € {7, 0}, and? for undefined references.

Run-Time Entities. Run-time expressions are generated from the ex-
tended Qjeblik grammar in Figure 2, where we introduce refereneeval-

ues as well as an additional construesit whose meaning will become clear
from its use later on. We refer to this extended set of term& s A run-

time objectO € O is either an object recor@® (ranging overl;=m;],cs) or

a pointer>o to an object reference € Rp. A run-time task? is a triple
(p,s,a) € Ry x Rp x Ly that refers to garentp, a currentself s, and a
run-time expression that remains to be evaluated. By the partial functions
sc(t) andpc(t), we refer to the current self and parent of the task associated
with referencet in €. We reserve the task referendgs t, € Ry for spe-

cial purposes. In the following, we only considdosed configurationsevery
variable occurring in a run-time expression is bound within that expression,
and every reference occurring in run-time expressions or in the codomain for
object references is defined by the very configuration.

Alias chains. The partial functionlic : Ro — R}, U (R{, - {1}) with

8
21 if Clo) =1
alic(o) def 0 if Clo) =0
“o-alic(o’) if C(o) = >0
computes thalias chain starting at reference, where- denotes concatena-
tion of (sets of) strings of references, in general possibly ending Wwithhis

Mobile Objects “Must” Move Safely 7
T O | wait | ol<=m | 0l(D)
o.clone | o.alias(0’)
o.surrogate | o.ping
letz=wvinb | fork(a) | join(t)

[] | e[]lem [e[]1(a) | ol(v,el] a)
e[-].clone | e[-].alias(b) | o.alias{e[:])
e[-].surrogate | e[-].ping

letz=e[-]inb | join(e[])

Figure 3. Evaluation of @jeblik run-time expressions

computation only terminates, if there are no cycles in the chain. The endpoint
of an alias chain is denoted byd(alic(0)); if it exists, then the semantics will
guarantee that it is associated with an object reéardVe writeo’ € alic(0)
if o’ occurs in the string representing the alias chain starting at

As a specialization of the above function, we define

8
=3 if Clo) =1
prec(o, s) = 0 if Clo)=00ro=s
“o-prec(o,s) if Clo) =>>0" ando # s
which yields the prefix of the alias chain startingdhat ends with the first
occurrence 0§, if it exists. If s € alic(o), thenprec(o, s) = alic(o).
We sometimes refer to object referencesades reflecting the fact that
they may denote nodes in an alias chain. A node domy(€) is activeif
there ist € dom7 () with sc(t) = o, otherwise it is calleddle.

Evaluation. Figure 3 contains grammars to genensgexes: andevalua-

tion contextse[-] used to control the leftmost-innermost evaluation [FF86] of
run-time expressions. A simple algorithm computes for every closed run-time
expressiorn ¢ R auniquepair of redex- and context[-] such that = e[r].

Behaviors. The semantics of a closed temnis given by assigning to it
the initial configurationa] = {tm:=(1,1T,a),t::=(T,1,tm)}. The task
referred to byt,, represents the start of the so-call@ain thread; the task
reference, is used as the parent of girbagetask references, i.e., references
that should not be reused, although their referred tasks are accomplished.

The behavior of configurations is generated from the syntax-directed transi-
tion rules in Figure 4. In each case we pick some task and object references in
a particular configuratios, which under the respective conditions may enable
a transition to take place ifi. In the premises, note that the expressions of
tasks are always in unique context-redex decomposed form. In the conclusions

¢
€ — €t = (p.s. BT (Lem)
e(t) = (ps,c0]) o)=1
¢ — Q{pt = (p,s,e[o]),0:= 0} (NEW)
€(t) = (p, s, e[fork{a)]) ct) =1
€ = (ps il T = (e O
&(t) = (p, s, efjoin(t')]) ') =(1,.1,v)
C =t = (s,] 0 = (bs, 0] (Jom)
€(t) = (p,s,elolx(0)]) ') =1
Q:(é) = [ljZC(Sj,i'j)bj]jej keJ
Vo € alic(o) : Availc(o,t) end(alic(0)) =6 (INV)
¢ — &{t:=(p,s,e[wait]),t' := (t,0,b{"s,5.})}
C(t) = (p, s, e[wait]) c(t')=(t,s,v)
E =Tt = (ps el ¥ = (1 1,0)] (RET)
C(t) = (p,s,efoly<=m])
&(s) = [l=myljes keJ
Vo € alic(o) : Availc(o,t) end(alic(o)) = s (UpD)
¢ — &{t:=(p,s,e[s]),s:= ly=m,ljzr=m;]jes}
S(t) = (p,(s,e)[o.c;l;ne% >< | (’2(0’1) :(g
0 € prec(o, s) : Availc(o,t s € alic(o
¢ p—> C@{t = (p,s, ec[o’]),0 == Qf(s)i (CLx)

¢(t) = (p, s, efo.alias(0)])
Vo € preg(o, s) : Availg(o,t) s € alic(o) (ALl)
¢ — &{t:=(p,s,eld]),s:=>0}

Figure 4. Structural Operational Semantics

Mobile Objects “Must” Move Safely 9

of the rules,&{t:=T, 0:=0} means that the mappingis either extended or
overwritten with the association of task referenceith taskT’, and object
reference» with run-time objecO.

(LeT) and (NEW) describe the local activity in a single taskn a straight-
forward manner; recall thast is not recursive. Furthermore, we assume that
the valuev is either a task or an object reference whose actual run-time en-
tity is accessible througl. In rule (Fork), a new task’ is spawned off,
which runs the expressianwithout current self. In rule Join), the parent
referring to its childt’ is returned a value. Note thatfork’ed tasks do not
know their parent, so they indeed represent initial tasks of new threads. As
soon as a threatlis join’ed, it is marked as garbage by means of the special
referencet, as its parent; no further attempt jigin ¢ will succeed, and can
not be reused after the firgtin. (INv) and RET) run a synchronous method
invocation protocol. Inlnv), a call to an object results in the creation of a new
(callee-) taskwithin the target object, while the caller-task is delayed, which is
syntactically represented by the temmit inserted into its evaluation context.

In rule (RET), this caller-callee pair can communicate the result as soon as
the callee-expression has reduced to a value; the callee afterwards refers to the
garbage reference. The rulesi(N)/(AL1)/(Inv)/(UpD) crucially depend on

the fact whether the alias chain—starting at the object on which the operation
is requested—is “available” for this request. The idea is to check whether a
request is allowed either to be performed in a node along the chain, as in rules
(CLN)/(AL1) using the functiorprec (o, s), or to be passed on to the endpoint

of the chain, as in ruledi{v)/(UpD) using the functiorlic(o). An individual
objecto is availablefor taskt in €, if o isidle, or if it is the same as the current

self of ¢, such that operations fromon o would be internal:

Availc(o,t) & o#sc(t)) V io =)

/€ dom (
|LEdomT () }

oisidle

internal

Apart from availability, the rulesrLN)/(AL1)/(UPD) are completely straight-
forward according to the informal semantics explained in Subsection 2.1.

Both surrogate and ping are semantically regarded as standard methods,
except that they are not updatable. Thus, the treatment of requesietgate
andping is analogouslfvv), except that there is no requiremémt.J to match
one of the defined labels sinsgrrogate andping are implicitly present.

For convenience, we sometimes label transitions with task references. This
provides precise information about the rule underlying it, because the run-time
expression inhabiting a task is uniquely decomposed into redex and context.

For exampleg ', ¢’ denotes that the transition is derived by exploiting the

(I
run-time expression of task(t). € o, ¢’ in addition explicits that rule

(Inv) was employed for the derivation. (For more precision, one could even

10

add the freshly chosen names as additional labels.) Similarly, bgt—> ¢’
we schematically denote those transitions which do not touch the task at

2.3. Behavioral Semantics

We define contextual equivalences based on convergence [Mor68].

Definition 1 (Computation & Convergence) Let & be a configuration.
1 Acomputatiore (starting at®) is

(a) either an infinite sequende;)o<; of configurations
withV0<i : €; — €41,

(b) or afinite sequenc@;)o<i<, Of configurations
withV0<i<n : €, — €11 and¢, .

2 Letc := (¢;); be a computation starting &. Thenc is calledsuccess-
ful, writtencl}, if there is0<s and valuev such that®,(¢,,) = (1, T,v).

3 (a) € may convergewritten €™
if there is a successful computation startingZat

(b) € must convergewritten @™,
if all computations starting a€ are successful.

4 Leta be a closed @jeblik term.
Thena™ if [a 4™, andall™"" if [a [,

This notion of success and convergence does not mean that the computation
of terma terminates, but rather that the main taskdoes so. Note that there
might befork’ed tasks around that have not yet bgein’'ed, and which may
possibly run forever.

An Gjeblik program context|-] is an Jjeblik term with a single holg]
that may be filled with an @jeblik term; we omit the straightforward formal
definition. A contextC[-] is closinga terma, if Cfa] is closed.

Definition 2 Leta,b € £ andC be a set of contexts closingb.
1 a andb are may-equivalentv.r.t. C writtena =5 b,
if forall C[-] € C: Cla]y™* iff C'[b]{™*.
2 a andb are must-equivaleniv.r.t. C written a 2g"" b,
if for all C[-] € C : C[a]l}™=* iff C'[p]{} ™5t

In a typed language such as djeblik [NHKMO1], it is natural to only consider
well-typed terms, i.e., only contexts yielding well-typed composites. The re-
sults of the current paper are robust w.r.t. this adaptation.

Mobile Objects “Must” Move Safely 11

3. On the Safety of Surrogation

In [NHKMO1], we motivated an equation on Jjeblik terms to model the
safety of object surrogation in the sense that object surrogation should be trans-
parent to object clients. In other words) object should behave the same with
or without surrogatiorin all possible contexts (i).

z.ping =5 z.surrogate
One of the main observations in [NHKMO1] was that the safety equation can
not hold for all jeblik-contexts: problematic are those in which the opera-
tion z.surrogate could occur internally. The reason is thiatiernal surrogation
might lead to a misuse, by intention or by accident, of the newly created refer-
ences. For example, let us look at the contexts

] ¥ [1=c(s)[].clone].l

Ca] C eta = [1=¢(s, z)[].clone]in z.1{x)
which perform a cloning operation on the hole inside a method. Note that the
access tes from within the hole is internal. If we plug.surrogate into the
hole, then the cloning will be carried out on the result of the internal surrogate.
However, since the surrogate returns a reference to the just created copy, the
clone will be external and block. If we plugping into the hole, then the
cloning will be performed without problems: here, it is internal dueitg in
this case returning just the current self of its surrounding method. We get:

C;[s-surrogate]lf and Ci[s.ping]y

In both cases, there are only deterministic reductions: in contrast to the case of
surrogate, the case of ping leads to a successful final state.

In [NHKMO1], we conjectured that in our semantics at least external sur-
rogation is safe. To deal with the undecidable criterion of external requests
[Car95] (hinted at by the above example), we introduced “tagged” requests as
additional versions of surrogation and ping. Tagging helps us to detect all “re-
guests arising from the hole”, i.e., if we start the evaluation of a context with
a tagged subterm plugged in, then we may check at any time whether, in a
run-time expression, a tagged subterm appears as top-level redex.

Definition 3 Let C[-] be a context withC'[z] closed. Then('[:] is called
externalfor z if [Clz.ping*]]] —* € with €(¢t) = (p, s, e[o.ping*]) and
Vo € alic(o) : Availc(o,t) impliess # end(alic(o)).

We letE(x) denote the set of @jeblik contexts externalfor

Theorem 1 (Safety) Letx be a variable. Letn € {may, must}. Then:

x.ping %E(m) x.surrogate.

12

In [MKNOQ], we indeed proved a variant of Theorem 1 based aralculus no-

tions of may-convergence and -equivalenite translationsof @jeblik-terms.

In the next section, we summarize a new proof, now based on the operational
semantics of Jjeblik termthemselves Moreover, we prove Theorem 1 for
must-equivalence, which was not treated in previous work because of the in-
sensitiveness of the standard bisimulation proof techniques w.r.t. divergence,
which matters fomust-equivalence.

4. Proving Safety

Proving Theorem 1 amounts to the mutual simulation of computations start-
ing in C[z.ping*] and C[x.surrogate*]. Here, we exemplify the proof for
must-equivalencea =i brequires us to prove thét[a] ™" iff C[b]y™"
for all C[-] € E(x). The direct proof requires the exhibition of success for
an infinite number of computations for each context. Instead, we choose the
equivalent formulation that requires us to prove thtgtarting atC'[z.ping*]
with —p|}) iff (s starting atC'[x.surrogate*] with —s{}). Summing up, for
must-equivalence we have to simulate unsuccessful computations. In contrast,
for may-equivalence we would have to simulate successful ones [MKNOQ].

4.1. Overview

We borrow from the strategy used in [MKNOOQ] and distinguish among the
transitions occurring in computatiosgnificantfrom insignificantones.

Definition 4 (Significant transitions)
Let (<;)o<; be a finite or infinite computation starting & = C[x.op*].

A transition¢; L, ¢;y1 is significant if &;(¢;) = (p, s, e[o.0p*]).

Every transition that represents the invocation of a tagged request is significant,
because only such transitions may cause different behaviors; every other tran-
sition is contributed by the program context and can thus be simulated trivially.

PROOF. [of z.ping %E&f; x.surrogate] (Full proof in [Bri01]).

In Figure 5, we sketch the constructive simulation of a computation starting
at C[z.ping*] by a computation starting &t[x.surrogate*]. We denote the
significant transitions by—y, so; ., (t;) = (pi, Si, ei[0i.ping*]). By the
syntactic relabeling functioffi"oe2t"/ . .|, we define:

V1<Vl <j<m,, Q:;,j def ¢ [surrogate*/ping*]
Note that, by this construction ping™ enabled ir¢; ; implies that aurrogate*
is enabled ircg,j. So, whenever a significaping needs to be simulated,
we invoke the respectivairrogate* and immediately perform the cloning and

Mobile Objects “Must” Move Safely 13

Let Jp starting at?; ; def C[x.ping*] with —p|}:
t1:(1
G = =8y 0, s €1 =0Cy

to:(I)
¢2,1 — o Q:Q,mg s Co = 63,1

tn:(I)
Q:n,l — s ¢n,mn — ¢, = Q:n-i—l,l

Then3s starting at] ; o C'[z.surrogate*] with —sJ}:

tl:(I) tli(c) tl:(A) ~
/ / / ~vmust /
11— G s & G =g G
tQ:(I) tQZ(C) tQZ(A) ~
/ / / ~vymust /
Ga = G, s & % =@ Ga
tn:(I) tn:(C) tn:(A) A
/ / / ~vmust /
nl " - Q:n,mn s Q:n Q:n —E(x) n+1,1

Figure 5. Simulatingping*-Computations

aliasing. The configurations; (resulting fromping™) and¢; (resulting from
surrogate*) are quite different: while the effect @ing” on an alias chain

> 0 6

®3)

ending iné is vacuous (it just returng), asurrogate* turns this chain into

d—10] 4)

in which 6 is a stable alias which will never ever change again (cf. § 4.2).
Since any incoming request will be forwarded to its successone may as
well direct all these requests directly to the successor: wepatti compres-
sion the technigue of manipulating a configuration through the elimination of
stable aliases (cf. § 4.3). The proof of %Ezﬁ ¢; works by manipulation

of Ei using this technique, while preserving and reflectingy- and must-
convergence properties. Intuitively, in this proof, path compression allows us
to “semantically undo” the effect of surrogation on configurations, such that
the simulatiors can afterwards proceed again in lock-step with computation

In Figure 6, the converse is depicted. The significant transitions are now
due to<; ,,, (ti) = (pi, si, e;[0;.surrogate*]). Yet, the simulation problem is
considerably more difficult than in the casepifig*, because the significant

14

Let Js starting at?; ; def C'[x.surrogate*] with —s|}:
tl:(l)
Ci1 — —=Cm —s& =0

to:(I)
Co1 — - =&y, ——s € =03

tn:(I)
Cpp — - — Q:n,mn —s &, = Q:n—i—l,l

)

Then3s’ starting atZ’ ; = C'z.surrogate*] with —s'):

t1:(1 t1:(C ti1:(A) ~
gy, A0 O B G
to:(I ta:(C ta:(A) ~
6/271 —>...—>Q:'27m2 z(0) SQ:/Z 2(C) =) ¢2:¢{371
O N iy T

Then3p starting aty def Clx.ping™] with —pJ}:

tlz(l)

U 1! !/l ~~vmust 1
11— 2 8m s 8 Sgpy G
tg:(l)

1 " /I ~vmust 1"
21 T T my T s < TE(zx) 31

/! ~vmust 1/
UMy SQ:u T E(z) u+1,1

Figure 6. Simulatingsurrogate*-Computations

steps callingsurrogate* are not necessarily directly followed by the cloning
and aliasing that required to complete surrogation. In a concurrent environ-
ment the completion might even be delayed arbitrarily. Therefore, we study
partial confluence properties (cf. 8 4.4), which allow us to reshuffle arbitrary
computationss so as to perform the required operations immediately, while
preserving and reflecting the intended convergence behavior. Caution is due:
in infinite computations, not every call efirrogate* must be completed. How-
ever, incomplete surrogations cannot have had an impact on the failure of the
computations, so we may either omit or complete those uncompleted signifi-
cant steps in order to match the formatbin Figure 6. We then define:

. . def ing*
V1 <4,V1 < 7 < my, Q:ZJ = (’3§,j [pmg /surrogate*]

Mobile Objects “Must” Move Safely 15

Now, analogous to the simulation of Figure 5, this ti&;eandeg’ need to be
related. Again, path compression on stable alias€s @oes the job. O

4.2. Stable Aliases

An alias node is a node e domp (€) with €(0) = >0’ for o’ € domp(<).
An alias node € domp(€) isstable if € —* ¢’ implies¢’(0) = €(0). Note
that idle alias nodes are always stable. However, inactivity is not a necessary
condition; any alias whose inhabiting task has reduced to a value is also stable.

Lemma5 Leto be an alias in€. Lett € dom7(€) andv be a value such that
&(t) = (p,o,v)andforallt’ #t: sc(t') # o. Theno is a stable alias ir.

Of course, also this lemma does not represent a necessary condition, but it is
sufficient for our proofs. Note that the resultwfrrogate* methods are tasks
of precisely the form{ p, 0, o’) with o turned into>>o/, so suctv are stable.

4.3. Path Compression

The aim is to eliminate stable aliases, as the one displayed in (4), and to
perform some convenient renaming afterwards in order to arrive at a situation
as displayed in (3). To be useful, all of these manipulations must not affect the
convergence properties of a configuration. The first stg@il compressign
which is a functiorcomp, (&), which replaces in configuratiahcontaining (4)

]
all references té, wherever they might occur in run-time expressions, as cur-
rent self, or in aliases of the configuration, &dyi.e., the successor éfin €.

[0] ®)

As a result of path compression, the referefidself is now “unused”. Con-
sequently, a simple destructive functieim;(-) may eliminate it.

o J | (6)

Finally, another functiomeny,, s (-) performs the renaming ef to 6, which

provides us with a configuration

that relates directly to the configuration containing (3), i.e., the resylingf

16

The crux of the “compress-eliminate-rename” procedure is that, properly
defined, all three operations are indifferent w.r.t. convergence.

Lemma 6 Leto be stable in® with €(6) = >0'. Letme{may, must}. Then:
Y™ iff rengy, sy (elimg(comp,(€)))I™M.

The detailed function definitions and proofs can be found in [BriO1].

4.4, Confluence

The methodsurrogate=¢(s)s.alias(s.clone), once invoked, involves three
transitions for cloning, aliasing, and returning its result. As a matter of fact,
these transitions can not be preempted in finite computations by any other op-
eration enabled at the same time. This fact is conveniently formalized as a
confluence property, which we list here for the case of cloning and aliasing.
(Confluence is of course not a new notion as such; it has been known in op-
erational semantics and term rewriting for a long time. See [MT99] for an
application in the context of semantics for Actor languages.)

Lemma 7 Let ¢ be a configuration. Let,, # t € Ry and leto € Ry with
€(t) = (p,0,0.x) whereo.x is a redex and for alt’ # ¢ : sc(t') # o. Let&;
and ¢, be configurations with transitions

¢
7N
Q:l Q:2

where the transition labeled witht implies€; (t) = €(¢) and€;(0) = €(0)
as well as for allt’ # ¢ : s¢, (') # o. Then there are

@1 9:2
Q:/

with ¢’ uniquely defined (up to the choice of fresh references):

1 If x = o.alias(o.clone) ando’ ¢ domp(€),
thene/ & C1{t := (p,o0,0.alias(d’)), o' := Co}.

2 If x = o.alias(d’) for o’ € domp(€),
thene’ ¢ {t:=(p,0,0),0:=>0}.

PRrOOF. By case analysis on the enabled transitiof.(O

Mobile Objects “Must” Move Safely 17

As a consequence of the confluence lemma, we can exhibit that in any com-
putation that enables the above operations of interest, these operations can be
assumed to be carried out immediately. Moreover, such a manipulation of
computations leaves unchanged the notion of success. Note that if a particu-
lar computation does not carry out an enabled operation, it must be infinite;
otherwise, it could be extended by finally performing the enabled transition.

A further consequence of the confluence lemma is that the transitions that
perform the interesting cloning and aliasing operations preserve and reflect
both themay- andmust-convergence behavior.

Lemma 8 Let ¢ be a configuration. Let,, # t € Ry and leto € Ry with
€(t) = (p,0,0.x) whereo.x is a redex and for alt’ # t : sc(t') # o. Let

¢ L ¢ Letme {may, must}. Then&|™ iff €'|™.
Proor. By “chasing diagrams” and pasting them together. O

While there is also a confluence property (cf. Lemma 7) for the case of enabled
(RET)-transitions involving task, the respective Lemma 8 would not hold.
Assume a surrogate operation that was called from within the main thread as
its last operation. Obviously, performing thR€T)-transition yields success

of the computation. Yet, there might be another task running an infinite loop,
so there might be infinite computations in which success is never reached.

5. Conclusion

In this paper, we have sketched a proof of the safety of object surrogation
(abstract object migration) using the operational semantics of @jeblik. In ad-
dition to may-equivalence, which we had already shown in previously using
a translational semantics, here we also prove the safety with respect to must-
equivalence. The combination of the two results is powerful. Contexts that
allow only successful computations with a surrogated object do so—by must-
equivalence—if and only if they allow only successful computations with the
unsurrogated object. Should there be unsuccessful computations (possibility of
deadlock/divergence) allowed by some context enclosing a surrogated object,
then—again by must-equivalence—the context will also allow for unsuccess-
ful computations when enclosing the unsurrogated object. In addition, may-
equivalence guarantees that surrogation does not add the possibility of success
in case there is none for the unsurrogated object, nor does it remove the possi-
bility of success in case there was one for the unsurrogated object. In summary,
object surrogation does neither add or remove the possibility of success, nor
does it add or remove the possibility of deadlock/divergence.

This paper underlines the conclusion of our whole project on the calculus
@ijeblik: there are both pros and cons for either the translational semantics
[MKNOQ] or the operational semantics [NHKMO1]. The former is equipped

18

with a huge set of proof tools, allows us to study parts of concurrent programs
separately and to discuss the design of the language implementation, but it
lacks support for divergence-sensitive studies. The latter needs to be equipped
with proper proof techniques from scratch, and it requires to study programs
as a whole, but it and its proofs are generally easier to understand.

References

[Bri01] S. Briais. Banc d’essai de Funnel — Migration d’objets dans @jeblik. Internship
report, ENS Lyon, EPF Lausanne, Sept. 2001. In French. Availabletttm
/lIwww.cs.auc.dk/research/FS/ojeblik/

[Car95] L. Cardelli. A Language with Distributed Scoggomputing System8(1):27—
59, 1995. Short version iRroceedings of POPL "95A preliminary version
appeared as Report 122, Digital Systems Research, June 1994.

[FF86] M. Felleisen and D. P. Friedman. Control Operators, the SECD-machine, and
the A-calculus. In M. Wirsing, edFormal Description of Programming Con-
cepts Il pages 193-217. North-Holland, 1986.

[Mer0Q] M. Merro. Locality in ther-calculus and applications to distributed objects
PhD thesis, Ecole des Mines, France, October 2000.

[MKNOQ] M. Merro, J. Kleist and U. Nestmann. Local-Calculus at Work: Mobile
Objects as Mobile Processes. In J. van Leeuwen, O. Watanabe, M. Hagiya,
P. Mosses and T. Ito, edBroceedings of TCS 2000olume 1872 ofLNCS
pages 390-408. IFIP, Springer, Aug. 2000. Available fratp://www.cs.
auc.dk/research/FS/ojeblik/ . Full version accepted for publication
in Journal of Information and Computation

[Mor68] J.-H. Morris. Lambda Calculus Models of Programming LanguagekD the-
sis, MIT, 1968.

[MT99] I. A. Mason and C. L. Talcott. Actor Languages: Their Syntax, Semantics,
Translation, and Equivalenceélheoretical Computer Scienc220:409 — 467,
1999.

[NHKMO1] U. Nestmann, H. Hittel, J. Kleist and M. Merro. Aliasing Models for Mobile
Objects. Accepted fatournal of Information and ComputatioAvailable from
http://www.cs.auc.dk/research/FS/ojeblik/ . An extended ab-
stract has appeared as Distinguished Paper iRttheeedings of EUROPAR '99
LNCS 1685, 2001.

