
MOBILE OBJECTS “MUST” MOVE SAFELY

Sébastien Briais
ENS Lyon, France

Sebastien.Briais@ens-lyon.fr

Uwe Nestmann
EPFL, Switzerland

Uwe.Nestmann@epfl.ch

Abstract
Øjeblik is a lexically-scoped, object-based calculus that represents a distribu-

tion-free subset of the LAN-based programming language Obliq. Thesurrogate
operation on Øjeblik-objects, which is the abstraction ofmigration on Obliq-
objects, is a combined operation derived from the more primitive operations
cloningandaliasing. In short, surrogation on an object turns the object into an
alias for a clone of itself; it amounts to migration when the original and the clone
reside on different distribution sites.

In previous work, we studied the conditions under which surrogation is safe,
i.e., transparent to object clients. To this aim, we developed two complementary
formal descriptions of Øjeblik’s semantics, one as an operational semantics on
Øjeblik-configurations, and another one by translation into a process calculus.
We used the former to explain typical (mis-)behaviors of Øjeblik programs, but
only the latter to perform rigorous correctness proofs w.r.t. may-equivalence.

In this paper, we offer new formal proofs, now based on the operational se-
mantics of Øjeblik, making the results as well as the proofs accessible also to
readers not familiar with process calculi. Furthermore, we strengthen our former
results by using, in addition to may-equivalence, the much more distinguishing
notion of must-equivalence.

1. Introduction

This paper addresses, like previous works [NHKM01, MKN00], the prob-
lem of expressing the mobility of objects in lexically-scoped languages like
Obliq [Car95] by means of cloning and aliasing. In this sense, it is to be seen
as a natural continuation of these works.

1

2

The title of this paper is intended to emphasize two different messages.
Firstly, it stresses the obligation that mobile objects should indeed move in
a safe way, which means that they—while moving—must not be disturbed by
any other concurrent activity and that they should move without allowing their
clients to take notice of it. Secondly, it hints at one of the two main new contri-
butions of this paper, namely the fact that clients cannot observe the difference
between the case in which an object has moved and the case in which it has not
(yet) moved, even not up to “must-equivalence”.

Relevance of the problem. In order to protect objects during migration and
the resulting proxies afterwards, Obliq proposes a blocking strategy (based
on serialization and protection against external modification). This strategy
appears to be necessary for the proposal of mobile objects through cloning
and aliasing. In such settings, the transparency-of-migration problems arise
inevitably, because the blocking strategy also affects the generated proxies.
Thus, our study is not only addressing Obliq, but any language that supports a
blocking strategy for transparent object migration using proxies.

Previous Work. We have studied in great detail the problems of devel-
oping and exploiting formal semantics of languages arising from Obliq. In
[NHKM01], guided by an implementation of Obliq, we studied four different
operational semantics and formalized safe migration as the following theorem:
in x.ping ∼= x.surrogate we equate (with respect to a large class of program
contexts) the programx.ping, which just witnesses the responsiveness ofx,
with the programx.surrogate, which performs a surrogation operation onx.
We then ruled out three of the operational semantics due to problems in satisfy-
ing the theorem, but we were not able (yet) to formally prove that our favorite
semantics would indeed satisfy it. In [MKN00], we then proved the theorem to
hold in our favorite semantics, but only when formalized as a translation into a
suitableπ-calculus [Mer00]. Furthermore, due to the character of the standard
proof techniques of theπ-calculus—some form of weak bisimulation, which is
usually insensitive w.r.t. divergence—we only gave a proof for the safety theo-
rem using the notion of may-equivalence∼=may, in which two terms to compare
must exhibit the same may-convergence behavior in all program contexts.

Contribution. This paper provides the missing link between [NHKM01]
and [MKN00]: several previous readers were missing a formal relation be-
tween the operational and the translational semantics just for completing the
understanding of the problem, others were arguing that proofs on translation
would be useless without such a link. Here, instead of establishing a formal
correspondence, we lift some proof ideas from the level of a process calculus
to the level of the operational semantics, we develop further proof techniques

Mobile Objects “Must” Move Safely 3

(partial confluence, path compression) that enable a deeper understanding of
the migration problem, and we strengthen previous results using the more dis-
tinguishing notion of must-equivalence∼=must. Our new proof techniques will
be reusable for other verification tasks, as well.

Outline. § 2 recalls the necessary syntactic and semantic details of the cal-
culus Øjeblik, our basic vehicle to study Obliq. In § 3, we briefly set up the
safety theorem that we are interested in. Finally, § 4 is dedicated to summarize
the highlights of a formal proof of the safety theorem using the operational
semantics and must-equivalence. Full proofs are found in [Bri01].

2. Concurrent Objects with Cloning and Aliasing

Øjeblik is a typed calculus [NHKM01], but we omit types throughout this
paper to keep the presentation simple. In comparison with Obliq [Car95],
which is a fully-fledged LAN-based programming language, we omit ground
values, data operations, and procedures, we restrict field selection to method
invocation, we restrict multiple cloning to single cloning, we omit flexibility of
object attributes, we replace field aliasing with object aliasing, we omit explicit
distribution, and we omit exceptions and advanced synchronization, so that we
get a feasible, but still non-trivial language.

2.1. Syntax

The setL of Øjeblik-terms is generated as shown in Figure 1, wheremethod
labelsl andvariabless, x, y, z are taken from countably infinite setsL andX,
respectively. The remainder of this subsection presents an informal explana-
tion of the semantics of Øjeblik terms. Computation follows the call-by-value
evaluation order; its goal is to reduce terms to values, which are run-time enti-
ties that we also call references (cf. Subsection 2.2 for the precise meaning).

Objects. An object record[lj =mj]j∈J is a finite collection of updatable
named methodslj =mj , more generally called fields, for pairwise distinct la-
belslj . In a methodς(s, x̃)b, the letterς denotes a binder for the self variables
and argument variables̃x within the bodyb. Moreover, every object in Øjeblik
comes equipped with special methods for cloning, aliasing, surrogation, and
ping, which cannot be overwritten by the update operation.

Method invocationa.l〈 c̃ 〉 with field l of the objecta containing the method
ς(s, x̃)b results in the bodyb with the self variables replaced by (a reference
to) the enclosing objecta, and the formal parameters̃x replaced by (references
to) the actual parametersc̃ of the invocation. Method updatea.l⇐m overwrites
the current content of the named fieldl in objectawith methodm and evaluates
to the modified object. The operationa.clone creates an object with the same

4

a, b, c ::= [lj =mj]j∈J object record
| a.l〈 c̃ 〉 method invocation
| a.l⇐m method update
| a.clone shallow copy
| a.alias〈b〉 object aliasing
| a.surrogate object surrogation
| a.ping object identity
| s, x, y, z variables
| letx= a in b local definition
| fork〈a〉 thread creation
| join〈a〉 thread destruction

mj ::= ς(sj , x̃j)bj method

Figure 1. Syntax of Øjeblik expressions

fields as the original object and initializes the fields to the same entries as in
the original object. The operationa.alias〈b〉 replaces objecta with an alias
to b, written a�b, regardless of whethera is already an alias; ifb itself is
an alias, e.g.b�c, then we consequently and naturally create an alias chain
a�b�c. After the operationa.alias〈b〉, requests arriving ata are forwarded
to b. The operationa.surrogate is the abstraction of migration: by calling
it, objecta is turned into an alias to a clone of itself, which is implemented
by providing a uniform methodsurrogate=ς(s)s.alias〈s.clone〉. Like standard
methods, surrogation is forwarded by aliased objects. The operationa.ping is
also implemented by providing a uniform method:ping=ς(s)s. Thus,a.ping
returns the “identity” of an objecto resulting from the evaluation ofa; note
that, due to aliasing and forwarding, this would be the “identity” of the current
endpoint of an alias chain potentially starting at objecto.

Self-Infliction, Serialization, Protection. Requests for operations on Øje-
blik-objects may appear either (i) somewhere within a method body, or (ii) just
within a let-body, or (iii) at top-level. Thecurrent self of a requestdenotes,
in case (i), the self of its surrounding method declaration; in the other cases, it
is undefined. A request for an Øjeblik operation isself-inflicted/internal, if it
addresses its current self; otherwise, it isexternal. For instance, the term

[l=ς(s)s.clone].l (1)

leads to an internalclone-request. However, not only literal invocations on the
self variablesmay be internal, but also indirect invocations on expressions that

Mobile Objects “Must” Move Safely 5

evaluate to the object itself may be internal. For instance, also in

letx= [l=ς(s, z)z.clone] inx.l〈x〉 (2)

the callz.clone will be internal when it is finally executed.
In concurrent object-based settings, the invariant that at most one thread at a

time may be active within an object is calledserialization. One way to ensure
serialization is to associatemutexeswith objects, which must be locked when a
thread enters an object and released when the thread exits the object. In Obliq,
the variant ofself-serializationrequires that the mutex is always acquired for
external operations, but never for internal ones. For instance, the program

letx= [l=ς(s)s.k , k=ς(s)s] inx.l

will terminate (delivering as a result the identity ofx), because the internal call
to methodk is permitted. In contrast, the program

letx= [l=ς(s, z)z.k ,m=ς(s)s] in let y= [k=ς(s)x.m] inx.l〈y〉

attempts a mutual recursion between the objectsx andy. However, it blocks
the recursive (external) call fromy to x for methodm, because the mutexx is
already locked by the former call ofl onx, which has not yet terminated.

Øjeblik objects areprotectedagainst external modifications in a natural way:
updates, cloning, and aliasing are only allowed if these operations are internal.
For instance, the terms (1) and (2) terminate successfully (with a result), while

letx= [l=ς(s)s] inx.clone

blocks (without result), because theclone-request is external.
In summary, operations on Øjeblik objects can be classified according to

protection conditionsand with respect to thenode of actiondenoting the node
where the operation is finally carried out (locally at the initially called node, or
at the endpoint of a chain starting at the called node).

operation protection condition? node of action
cloning, aliasing internal-only local

update internal-only endpoint
invocation, surrogation, ping unconstrained endpoint

Scoping. Øjeblik offers scope declarations. An expressionletx= a in b first
evaluatesa, binding the result tox, and then evaluatesb within the scope of
the new binding. We use the standard inductive definitionfv(a) to denote the
free variables of terma with respect to method- and let-binding. Øjeblik only
admits non-recursive expressionsletx= a in b, i.e., with x 6∈ fv(a). Then,
a; b denotesletx= a in b, wherex 6∈ fv(b). A terma is closedif fv(a) = ∅.

6

a, b ::= . . . | v | wait

Figure 2. Syntax of Øjeblik run-time expressions

Concurrency. Computational activity takes place withinthreads. Apart
from the main thread that is started on initialization, new separate threads can
be created by thefork command. The termfork〈a〉 returns a new thread iden-
tifier to denote the thread evaluatinga. The result of afork’ed computation is
grabbed by thejoin command. Ifa evaluates to a thread identifier, thenjoin〈a〉
potentially blocks until that thread finishes and returns the thread’s result, or
blocks forever, if ajoin on threada was already performed earlier.

2.2. Operational Semantics

The semantics performs local changes on global run-timeconfigurations,
which are mappings from referencesv ∈ R to run-time entities. More pre-
cisely, a configurationC maps task referencest ∈ RT to tasksT, and object
referenceso ∈ RO to objectsO (see below). We usedomX(C) to denote
dom(C)∩RX for X ∈ {T ,O}, and↑ for undefined references.

Run-Time Entities. Run-time expressionsa are generated from the ex-
tended Øjeblik grammar in Figure 2, where we introduce referencesv asval-
ues, as well as an additional constructwait whose meaning will become clear
from its use later on. We refer to this extended set of terms asLR. A run-
time objectO ∈ O is either an object recordO (ranging over[lj =mj]j∈J) or
a pointer�o to an object referenceo ∈ RO . A run-time taskT is a triple
〈 p, s, a 〉 ∈ RT × RO × LR that refers to aparentp, a currentself s, and a
run-time expressiona that remains to be evaluated. By the partial functions
sC(t) andpC(t), we refer to the current self and parent of the task associated
with referencet in C. We reserve the task referencestm, tg ∈ RT for spe-
cial purposes. In the following, we only considerclosed configurations: every
variable occurring in a run-time expression is bound within that expression,
and every reference occurring in run-time expressions or in the codomain for
object references is defined by the very configuration.

Alias chains. The partial functionaliC : RO ⇀ R∗O ∪ (R∗O · {↑}) with

aliC(o)
def
=

8
><

>:

↑ if C(o) = ↑
o if C(o) = O
o · aliC(o′) if C(o) =�o′

computes thealias chain, starting at referenceo, where· denotes concatena-
tion of (sets of) strings of references, in general possibly ending with↑. This

Mobile Objects “Must” Move Safely 7

r ::= O | wait | o.l⇐m | o.l〈 ṽ 〉
| o.clone | o.alias〈o′〉
| o.surrogate | o.ping
| letx= v in b | fork〈a〉 | join〈t〉

e[·] ::= [·] | e[·].l⇐m | e[·].l〈 ã 〉 | o.l〈 ṽ, e[·], ã 〉
| e[·].clone | e[·].alias〈b〉 | o.alias〈e[·]〉
| e[·].surrogate | e[·].ping
| letx= e[·] in b | join〈e[·]〉

Figure 3. Evaluation of Øjeblik run-time expressions

computation only terminates, if there are no cycles in the chain. The endpoint
of an alias chain is denoted byend(aliC(o)); if it exists, then the semantics will
guarantee that it is associated with an object recordO. We writeo′ ∈ aliC(o)
if o′ occurs in the string representing the alias chain starting ato.

As a specialization of the above function, we define

preC(o, s)
def
=

8
><

>:

↑ if C(o) = ↑
o if C(o) = O or o = s

o · preC(o′, s) if C(o) =�o′ ando 6= s

which yields the prefix of the alias chain starting ino that ends with the first
occurrence ofs, if it exists. If s 6∈ aliC(o), thenpreC(o, s) = aliC(o).

We sometimes refer to object references asnodes, reflecting the fact that
they may denote nodes in an alias chain. A nodeo ∈ domO(C) is active if
there ist ∈ domT (C) with sC(t) = o, otherwise it is calledidle.

Evaluation. Figure 3 contains grammars to generateredexesr andevalua-
tion contextse[·] used to control the leftmost-innermost evaluation [FF86] of
run-time expressions. A simple algorithm computes for every closed run-time
expressiona 6∈ R auniquepair of redexr and contexte[·] such thata = e[r].

Behaviors. The semantics of a closed terma is given by assigning to it
the initial configuration[[[a]]] := {tm:=〈 ↑, ↑, a 〉, tg:=〈 ↑, ↑, tm 〉}. The task
referred to bytm represents the start of the so-calledmain thread; the task
referencetg is used as the parent of allgarbagetask references, i.e., references
that should not be reused, although their referred tasks are accomplished.

The behavior of configurations is generated from the syntax-directed transi-
tion rules in Figure 4. In each case we pick some task and object references in
a particular configurationC, which under the respective conditions may enable
a transition to take place inC. In the premises, note that the expressions of
tasks are always in unique context-redex decomposed form. In the conclusions

8

C(t) = 〈 p, s, e[letx= v in b] 〉
C −→ C{t := 〈 p, s, e[b{v/x}] 〉}

(Let)

C(t) = 〈 p, s, e[O] 〉 C(o) = ↑
C −→ C{t := 〈 p, s, e[o] 〉, o := O} (New)

C(t) = 〈 p, s, e[fork〈a〉] 〉 C(t′) = ↑
C −→ C{t := 〈 p, s, e[t′] 〉, t′ := 〈 ↑, ↑, a 〉} (Fork)

C(t) = 〈 p, s, e[join〈t′〉] 〉 C(t′) = 〈 ↑, ↑, v 〉
C −→ C{t := 〈 p, s, e[v] 〉, t′ := 〈 tg, ↑, v 〉}

(Join)

C(t) = 〈 p, s, e[o.lk 〈 ṽ 〉] 〉 C(t′) = ↑
C(ô) = [lj =ς(sj , x̃j)bj]j∈J k∈J
∀ȯ ∈ aliC(o) : AvailC(ȯ, t) end(aliC(o)) = ô

C −→ C{ t := 〈 p, s, e[wait] 〉, t′ := 〈 t, ô, bk{ôṽ/skx̃k} 〉}
(Inv)

C(t) = 〈 p, s, e[wait] 〉 C(t′) = 〈 t, s′, v 〉
C −→ C{t := 〈 p, s, e[v] 〉, t′ := 〈 tg, ↑, v 〉}

(Ret)

C(t) = 〈 p, s, e[o.lk⇐m] 〉
C(s) = [lj =mj]j∈J k∈J
∀ȯ ∈ aliC(o) : AvailC(ȯ, t) end(aliC(o)) = s

C −→ C{ t := 〈 p, s, e[s] 〉, s := [lk =m, lj 6=k =mj]j∈J}
(Upd)

C(t) = 〈 p, s, e[o.clone] 〉 C(o′) = ↑
∀ȯ ∈ preC(o, s) : AvailC(ȯ, t) s ∈ aliC(o)

C −→ C{t := 〈 p, s, e[o′] 〉, o′ := C(s)} (Cln)

C(t) = 〈 p, s, e[o.alias〈o′〉] 〉
∀ȯ ∈ preC(o, s) : AvailC(ȯ, t) s ∈ aliC(o)

C −→ C{t := 〈 p, s, e[o′] 〉, s :=�o′}
(Ali)

Figure 4. Structural Operational Semantics

Mobile Objects “Must” Move Safely 9

of the rules,C{t:=T, o:=O} means that the mappingC is either extended or
overwritten with the association of task referencet with taskT , and object
referenceo with run-time objectO.

(Let) and (New) describe the local activity in a single taskt in a straight-
forward manner; recall thatlet is not recursive. Furthermore, we assume that
the valuev is either a task or an object reference whose actual run-time en-
tity is accessible throughC. In rule (Fork), a new taskt′ is spawned off,
which runs the expressiona without current self. In rule (Join), the parent
referring to its childt′ is returned a valuev. Note thatfork’ed tasks do not
know their parent, so they indeed represent initial tasks of new threads. As
soon as a threadt is join’ed, it is marked as garbage by means of the special
referencetg as its parent; no further attempt tojoin t will succeed, andt can
not be reused after the firstjoin. (Inv) and (Ret) run a synchronous method
invocation protocol. In (Inv), a call to an object results in the creation of a new
(callee-) taskwithin the target object, while the caller-task is delayed, which is
syntactically represented by the termwait inserted into its evaluation context.
In rule (Ret), this caller-callee pair can communicate the result as soon as
the callee-expression has reduced to a value; the callee afterwards refers to the
garbage reference. The rules (Cln)/(Ali)/(Inv)/(Upd) crucially depend on
the fact whether the alias chain—starting at the object on which the operation
is requested—is “available” for this request. The idea is to check whether a
request is allowed either to be performed in a node along the chain, as in rules
(Cln)/(Ali) using the functionpreC(o, s), or to be passed on to the endpoint
of the chain, as in rules (Inv)/(Upd) using the functionaliC(o). An individual
objecto is availablefor taskt in C, if o is idle, or if it is the same as the current
self of t, such that operations fromt ono would be internal:

AvailC(o, t)
def
=

^
t′∈ domT (C)

(o 6= sC(t′))
| {z }

o is idle

∨ (o = sC(t))
| {z }

internal

Apart from availability, the rules (Cln)/(Ali)/(Upd) are completely straight-
forward according to the informal semantics explained in Subsection 2.1.

Both surrogate and ping are semantically regarded as standard methods,
except that they are not updatable. Thus, the treatment of requests forsurrogate
andping is analogous (Inv), except that there is no requirementk∈J to match
one of the defined labels sincesurrogate andping are implicitly present.

For convenience, we sometimes label transitions with task references. This
provides precise information about the rule underlying it, because the run-time
expression inhabiting a task is uniquely decomposed into redex and context.

For example,C
t−−→ C′ denotes that the transition is derived by exploiting the

run-time expression of taskC(t). C
t:(I)
−−−−→ C′ in addition explicits that rule

(Inv) was employed for the derivation. (For more precision, one could even

10

add the freshly chosen names as additional labels.) Similarly, byC
¬t−−−→ C′

we schematically denote those transitions which do not touch the task att.

2.3. Behavioral Semantics

We define contextual equivalences based on convergence [Mor68].

Definition 1 (Computation & Convergence) LetC be a configuration.

1 Acomputationc (starting atC0) is

(a) either an infinite sequence(Ci)0≤i of configurations
with ∀0≤i : Ci −→ Ci+1,

(b) or a finite sequence(Ci)0≤i≤n of configurations
with ∀0≤i<n : Ci −→ Ci+1 andCn 6 −→.

2 Letc := (Ci)i be a computation starting atC. Thenc is calledsuccess-
ful, writtenc⇓, if there is0≤s and valuev such thatCs(tm) = 〈 ↑, ↑, v 〉.

3 (a) C may converge, writtenC⇓may,
if there is a successful computation starting atC.

(b) C must converge, writtenC⇓must,
if all computations starting atC are successful.

4 Leta be a closed Øjeblik term.
Thena⇓may if [[[a]]]⇓may, anda⇓must if [[[a]]]⇓must.

This notion of success and convergence does not mean that the computation
of terma terminates, but rather that the main tasktm does so. Note that there
might befork’ed tasks around that have not yet beenjoin’ed, and which may
possibly run forever.

An Øjeblik program contextC[·] is an Øjeblik term with a single hole[·]
that may be filled with an Øjeblik term; we omit the straightforward formal
definition. A contextC[·] is closinga terma, if C[a] is closed.

Definition 2 Leta, b ∈ L andC be a set of contexts closinga, b.

1 a andb aremay-equivalentw.r.t. C writtena ∼=may
C b,

if for all C[·] ∈ C :C[a]⇓may iffC[b]⇓may.

2 a andb aremust-equivalentw.r.t. C writtena ∼=must
C b,

if for all C[·] ∈ C :C[a]⇓must iffC[b]⇓must.

In a typed language such as Øjeblik [NHKM01], it is natural to only consider
well-typed terms, i.e., only contexts yielding well-typed composites. The re-
sults of the current paper are robust w.r.t. this adaptation.

Mobile Objects “Must” Move Safely 11

3. On the Safety of Surrogation

In [NHKM01], we motivated an equation on Øjeblik terms to model the
safety of object surrogation in the sense that object surrogation should be trans-
parent to object clients. In other words,an object should behave the same with
or without surrogationin all possible contexts (inC).

x.ping ∼=may
C x.surrogate

One of the main observations in [NHKM01] was that the safety equation can
not hold for all Øjeblik-contexts: problematic are those in which the opera-
tion x.surrogate could occur internally. The reason is thatinternalsurrogation
might lead to a misuse, by intention or by accident, of the newly created refer-
ences. For example, let us look at the contexts

C1[·]
def= [l=ς(s)[·].clone].l

C2[·]
def= letx= [l=ς(s, z)[·].clone] inx.l〈x〉

which perform a cloning operation on the hole inside a method. Note that the
access tos from within the hole is internal. If we plugs.surrogate into the
hole, then the cloning will be carried out on the result of the internal surrogate.
However, since the surrogate returns a reference to the just created copy, the
clone will be external and block. If we plugs.ping into the hole, then the
cloning will be performed without problems: here, it is internal due toping in
this case returning just the current self of its surrounding method. We get:

Ci[s.surrogate] 6⇓ and Ci[s.ping]⇓

In both cases, there are only deterministic reductions: in contrast to the case of
surrogate, the case of ping leads to a successful final state.

In [NHKM01], we conjectured that in our semantics at least external sur-
rogation is safe. To deal with the undecidable criterion of external requests
[Car95] (hinted at by the above example), we introduced “tagged” requests as
additional versions of surrogation and ping. Tagging helps us to detect all “re-
quests arising from the hole”, i.e., if we start the evaluation of a context with
a tagged subterm plugged in, then we may check at any time whether, in a
run-time expression, a tagged subterm appears as top-level redex.

Definition 3 Let C[·] be a context withC[x] closed. Then,C[·] is called
externalfor x if [[[C[x.ping?]]]] −→∗ C with C(t) = 〈 p, s, e[o.ping?] 〉 and
∀ȯ ∈ aliC(o) : AvailC(ȯ, t) impliess 6= end(aliC(o)).

We letE(x) denote the set of Øjeblik contexts external forx.

Theorem 1 (Safety) Letx be a variable. Letm ∈ {may,must}. Then:

x.ping ∼=m
E(x) x.surrogate.

12

In [MKN00], we indeed proved a variant of Theorem 1 based onπ-calculus no-
tions ofmay-convergence and -equivalencefor translationsof Øjeblik-terms.
In the next section, we summarize a new proof, now based on the operational
semantics of Øjeblik termsthemselves. Moreover, we prove Theorem 1 for
must-equivalence, which was not treated in previous work because of the in-
sensitiveness of the standard bisimulation proof techniques w.r.t. divergence,
which matters formust-equivalence.

4. Proving Safety

Proving Theorem 1 amounts to the mutual simulation of computations start-
ing in C[x.ping?] andC[x.surrogate?]. Here, we exemplify the proof for
must-equivalence:a ∼=must

E(x) b requires us to prove thatC[a]⇓must iff C[b]⇓must

for all C[·] ∈ E(x). The direct proof requires the exhibition of success for
an infinite number of computations for each context. Instead, we choose the
equivalent formulation that requires us to prove that (∃p starting atC[x.ping?]
with ¬p⇓) iff (∃s starting atC[x.surrogate?] with ¬s⇓). Summing up, for
must-equivalence we have to simulate unsuccessful computations. In contrast,
for may-equivalence we would have to simulate successful ones [MKN00].

4.1. Overview

We borrow from the strategy used in [MKN00] and distinguish among the
transitions occurring in computationssignificantfrom insignificantones.

Definition 4 (Significant transitions)
Let (Ci)0≤i be a finite or infinite computation starting atC0 = C[x.op?].

A transitionCi
ti−−→ Ci+1 is significant, if Ci(ti) = 〈 p, s, e[o.op?] 〉.

Every transition that represents the invocation of a tagged request is significant,
because only such transitions may cause different behaviors; every other tran-
sition is contributed by the program context and can thus be simulated trivially.

Proof. [of x.ping ∼=must
E(x) x.surrogate] (Full proof in [Bri01]).

In Figure 5, we sketch the constructive simulation of a computation starting
at C[x.ping?] by a computation starting atC[x.surrogate?]. We denote the
significant transitions by−→s, so Ci,mi(ti) = 〈 pi, si, ei[oi.ping?] 〉. By the
syntactic relabeling function[surrogate?/ping?], we define:

∀1 ≤ i,∀1 ≤ j ≤ mi,C
′
i,j

def= Ci,j [surrogate?/ping?]

Note that, by this construction, aping? enabled inCi,j implies that asurrogate?

is enabled inC′i,j . So, whenever a significantping? needs to be simulated,
we invoke the respectivesurrogate? and immediately perform the cloning and

Mobile Objects “Must” Move Safely 13

Let ∃p starting atC1,1
def= C[x.ping?] with ¬p⇓:

C1,1 −→ · · · −→C1,m1

t1:(I)
−−−−−→s C1 = C2,1

C2,1 −→ · · · −→C2,m2

t2:(I)
−−−−−→s C2 = C3,1

...
...

...

Cn,1 −→ · · · −→Cn,mn
tn:(I)
−−−−−→s Cn = Cn+1,1

...
...

...

Then∃s starting atC′1,1
def= C[x.surrogate?] with ¬s⇓:

C′1,1 −→ · · · −→C′1,m1

t1:(I)
−−−−−→s C′1

t1:(C)
−−−−−→

t1:(A)
−−−−−→ Ĉ1

∼=must
E(x) C′2,1

C′2,1 −→ · · · −→C′2,m2

t2:(I)
−−−−−→s C′2

t2:(C)
−−−−−→

t2:(A)
−−−−−→ Ĉ2

∼=must
E(x) C′3,1

...
...

...

C′n,1 −→ · · · −→C′n,mn
tn:(I)
−−−−−→s C′n

tn:(C)
−−−−−→

tn:(A)
−−−−−→ Ĉn ∼=must

E(x) C′n+1,1
...

...
...

Figure 5. Simulatingping?-Computations

aliasing. The configurationsCi (resulting fromping?) andĈi (resulting from
surrogate?) are quite different: while the effect ofping? on an alias chain

// o // ô (3)

ending inô is vacuous (it just returnŝo), asurrogate? turns this chain into

// o // ô // o′ (4)

in which ô is a stable alias, which will never ever change again (cf. § 4.2).
Since any incoming request will be forwarded to its successoro′, we may as
well direct all these requests directly to the successor: we callpath compres-
sion the technique of manipulating a configuration through the elimination of
stable aliases (cf. § 4.3). The proof ofĈi ∼=must

E(x) Ci works by manipulation

of Ĉi using this technique, while preserving and reflectingmay- andmust-
convergence properties. Intuitively, in this proof, path compression allows us
to “semantically undo” the effect of surrogation on configurations, such that
the simulations can afterwards proceed again in lock-step with computationp.

In Figure 6, the converse is depicted. The significant transitions are now
due toCi,mi(ti) = 〈 pi, si, ei[oi.surrogate?] 〉. Yet, the simulation problem is
considerably more difficult than in the case ofping?, because the significant

14

Let ∃s starting atC1,1
def= C[x.surrogate?] with ¬s⇓:

C1,1 −→ · · · −→C1,m1

t1:(I)
−−−−−→s C1 = C2,1

C2,1 −→ · · · −→C2,m2

t2:(I)
−−−−−→s C2 = C3,1

...
...

...

Cn,1 −→ · · · −→Cn,mn
tn:(I)
−−−−−→s Cn = Cn+1,1

...
...

...

Then∃s′ starting atC′1,1
def= C[x.surrogate?] with ¬s′⇓:

C′1,1 −→ · · · −→C′1,m1

t1:(I)
−−−−−→s C′1

t1:(C)
−−−−−→

t1:(A)
−−−−−→ Ĉ1 = C′2,1

C′2,1 −→ · · · −→C′2,m2

t2:(I)
−−−−−→s C′2

t2:(C)
−−−−−→

t2:(A)
−−−−−→ Ĉ2 = C′3,1

...
...

...

C′u,1 −→ · · · −→C′u,mu
tu:(I)
−−−−−→s C′u

tu:(C)
−−−−−→

tu:(A)
−−−−−→ Ĉu = C′u+1,1

...
...

...

Then∃p starting atC′′1,1
def= C[x.ping?] with ¬p⇓:

C′′1,1 −→ · · · −→C′′1,m1

t1:(I)
−−−−−→s C′′1

∼=must
E(x) C′′2,1

C′′2,1 −→ · · · −→C′′2,m2

t2:(I)
−−−−−→s C′′2

∼=must
E(x) C′′3,1

...
...

...

C′′u,1 −→ · · · −→C′′u,mu
tu:(I)
−−−−−→s C′′u

∼=must
E(x) C′′u+1,1

...
...

...

Figure 6. Simulatingsurrogate?-Computations

steps callingsurrogate? are not necessarily directly followed by the cloning
and aliasing that required to complete surrogation. In a concurrent environ-
ment the completion might even be delayed arbitrarily. Therefore, we study
partial confluenceproperties (cf. § 4.4), which allow us to reshuffle arbitrary
computationss so as to perform the required operations immediately, while
preserving and reflecting the intended convergence behavior. Caution is due:
in infinite computations, not every call ofsurrogate? must be completed. How-
ever, incomplete surrogations cannot have had an impact on the failure of the
computations, so we may either omit or complete those uncompleted signifi-
cant steps in order to match the format ofs′ in Figure 6. We then define:

∀1 ≤ i,∀1 ≤ j ≤ mi,C
′′
i,j

def= C′i,j [
ping?/surrogate?]

Mobile Objects “Must” Move Safely 15

Now, analogous to the simulation of Figure 5, this timeĈi andC′′i need to be
related. Again, path compression on stable aliases inĈi does the job. 2

4.2. Stable Aliases

An alias node is a nodeo ∈ domO(C) with C(o) =�o′ for o′ ∈ domO(C).
An alias nodeo ∈ domO(C) is stable, if C −→∗ C′ impliesC′(o) = C(o). Note
that idle alias nodes are always stable. However, inactivity is not a necessary
condition; any alias whose inhabiting task has reduced to a value is also stable.

Lemma 5 Leto be an alias inC. Lett ∈ domT (C) andv be a value such that
C(t) = 〈 p, o, v 〉 and for all t′ 6= t : sC(t′) 6= o. Theno is a stable alias inC.

Of course, also this lemma does not represent a necessary condition, but it is
sufficient for our proofs. Note that the result ofsurrogate? methods are tasks
of precisely the form〈 p, o, o′ 〉 with o turned into�o′, so sucho are stable.

4.3. Path Compression

The aim is to eliminate stable aliases, as the one displayed in (4), and to
perform some convenient renaming afterwards in order to arrive at a situation
as displayed in (3). To be useful, all of these manipulations must not affect the
convergence properties of a configuration. The first step ispath compression,
which is a functioncompô(C), which replaces in configurationC containing (4)

// o // ô // o′

all references tôo, wherever they might occur in run-time expressions, as cur-
rent self, or in aliases of the configuration, byo′, i.e., the successor of̂o in C.

ô

��
// o // o′

(5)

As a result of path compression, the referenceô itself is now “unused”. Con-
sequently, a simple destructive functionelimô(·) may eliminate it.

o // o′ (6)

Finally, another functionren{o′ 7→ô}(·) performs the renaming ofo′ to ô, which
provides us with a configuration

// o // ô

that relates directly to the configuration containing (3), i.e., the result ofping.

16

The crux of the “compress-eliminate-rename” procedure is that, properly
defined, all three operations are indifferent w.r.t. convergence.

Lemma 6 Let ô be stable inC with C(ô) =�o′. Letm∈{may,must}. Then:

C⇓m iff ren{o′ 7→ô}(elimô(compô(C)))⇓m.

The detailed function definitions and proofs can be found in [Bri01].

4.4. Confluence

The methodsurrogate=ς(s)s.alias〈s.clone〉, once invoked, involves three
transitions for cloning, aliasing, and returning its result. As a matter of fact,
these transitions can not be preempted in finite computations by any other op-
eration enabled at the same time. This fact is conveniently formalized as a
confluence property, which we list here for the case of cloning and aliasing.
(Confluence is of course not a new notion as such; it has been known in op-
erational semantics and term rewriting for a long time. See [MT99] for an
application in the context of semantics for Actor languages.)

Lemma 7 Let C be a configuration. Lettm 6= t ∈ RT and leto ∈ RO with
C(t) = 〈 p, o, o.x 〉 whereo.x is a redex and for allt′ 6= t : sC(t′) 6= o. LetC1

andC2 be configurations with transitions

C
¬t

��~~~~~~~
t

��@@@@@@@

C1 C2

where the transition labeled with¬t impliesC1(t) = C(t) andC1(o) = C(o)
as well as for allt′ 6= t : sC1(t′) 6= o. Then there are

C1

t @@@@@@@ C2

¬t~~~~~~~~~

C′

with C′ uniquely defined (up to the choice of fresh references):

1 If x = o.alias〈o.clone〉 ando′ 6∈ domO(C),
thenC′

def= C1{t := 〈 p, o, o.alias〈o′〉 〉, o′ := Co}.

2 If x = o.alias〈o′〉 for o′ ∈ domO(C),
thenC′

def= C1{t := 〈 p, o, o′ 〉, o :=�o′}.

Proof. By case analysis on the enabled transitions (¬t). 2

Mobile Objects “Must” Move Safely 17

As a consequence of the confluence lemma, we can exhibit that in any com-
putation that enables the above operations of interest, these operations can be
assumed to be carried out immediately. Moreover, such a manipulation of
computations leaves unchanged the notion of success. Note that if a particu-
lar computation does not carry out an enabled operation, it must be infinite;
otherwise, it could be extended by finally performing the enabled transition.

A further consequence of the confluence lemma is that the transitions that
perform the interesting cloning and aliasing operations preserve and reflect
both themay- andmust-convergence behavior.

Lemma 8 Let C be a configuration. Lettm 6= t ∈ RT and leto ∈ RO with
C(t) = 〈 p, o, o.x 〉 whereo.x is a redex and for allt′ 6= t : sC(t′) 6= o. Let

C
t−−→ C′. Letm ∈ {may,must}. ThenC⇓m iff C′⇓m.

Proof. By “chasing diagrams” and pasting them together. 2

While there is also a confluence property (cf. Lemma 7) for the case of enabled
(Ret)-transitions involving taskt, the respective Lemma 8 would not hold.
Assume a surrogate operation that was called from within the main thread as
its last operation. Obviously, performing the (Ret)-transition yields success
of the computation. Yet, there might be another task running an infinite loop,
so there might be infinite computations in which success is never reached.

5. Conclusion

In this paper, we have sketched a proof of the safety of object surrogation
(abstract object migration) using the operational semantics of Øjeblik. In ad-
dition to may-equivalence, which we had already shown in previously using
a translational semantics, here we also prove the safety with respect to must-
equivalence. The combination of the two results is powerful. Contexts that
allow only successful computations with a surrogated object do so—by must-
equivalence—if and only if they allow only successful computations with the
unsurrogated object. Should there be unsuccessful computations (possibility of
deadlock/divergence) allowed by some context enclosing a surrogated object,
then—again by must-equivalence—the context will also allow for unsuccess-
ful computations when enclosing the unsurrogated object. In addition, may-
equivalence guarantees that surrogation does not add the possibility of success
in case there is none for the unsurrogated object, nor does it remove the possi-
bility of success in case there was one for the unsurrogated object. In summary,
object surrogation does neither add or remove the possibility of success, nor
does it add or remove the possibility of deadlock/divergence.

This paper underlines the conclusion of our whole project on the calculus
Øjeblik: there are both pros and cons for either the translational semantics
[MKN00] or the operational semantics [NHKM01]. The former is equipped

18

with a huge set of proof tools, allows us to study parts of concurrent programs
separately and to discuss the design of the language implementation, but it
lacks support for divergence-sensitive studies. The latter needs to be equipped
with proper proof techniques from scratch, and it requires to study programs
as a whole, but it and its proofs are generally easier to understand.

References

[Bri01] S. Briais. Banc d’essai de Funnel — Migration d’objets dans Øjeblik. Internship
report, ENS Lyon, EPF Lausanne, Sept. 2001. In French. Available fromhttp:
//www.cs.auc.dk/research/FS/ojeblik/ .

[Car95] L. Cardelli. A Language with Distributed Scope.Computing Systems, 8(1):27–
59, 1995. Short version inProceedings of POPL ’95. A preliminary version
appeared as Report 122, Digital Systems Research, June 1994.

[FF86] M. Felleisen and D. P. Friedman. Control Operators, the SECD-machine, and
theλ-calculus. In M. Wirsing, ed,Formal Description of Programming Con-
cepts III, pages 193–217. North-Holland, 1986.

[Mer00] M. Merro. Locality in theπ-calculus and applications to distributed objects.
PhD thesis, Ecole des Mines, France, October 2000.

[MKN00] M. Merro, J. Kleist and U. Nestmann. Localπ-Calculus at Work: Mobile
Objects as Mobile Processes. In J. van Leeuwen, O. Watanabe, M. Hagiya,
P. Mosses and T. Ito, eds,Proceedings of TCS 2000, volume 1872 ofLNCS,
pages 390–408. IFIP, Springer, Aug. 2000. Available fromhttp://www.cs.
auc.dk/research/FS/ojeblik/ . Full version accepted for publication
in Journal of Information and Computation.

[Mor68] J.-H. Morris. Lambda Calculus Models of Programming Languages. PhD the-
sis, MIT, 1968.

[MT99] I. A. Mason and C. L. Talcott. Actor Languages: Their Syntax, Semantics,
Translation, and Equivalence.Theoretical Computer Science, 220:409 – 467,
1999.

[NHKM01] U. Nestmann, H. Hüttel, J. Kleist and M. Merro. Aliasing Models for Mobile
Objects. Accepted forJournal of Information and Computation. Available from
http://www.cs.auc.dk/research/FS/ojeblik/ . An extended ab-
stract has appeared as Distinguished Paper in theProceedings of EUROPAR ’99,
LNCS 1685, 2001.

