
EXPRESS 2005 Preliminary Version

Open bisimulation, revisited ?

Sébastien Briais ?? Uwe Nestmann

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract

In the context of the π-calculus, open bisimulation is prominent and popular due to
its congruence properties and its easy implementability. Motivated by the attempt
to generalise it to the spi-calculus, we offer a new, more refined definition and show
in how far it coincides with the original one.

1 Introduction

Open bisimulation, as introduced by Sangiorgi [San96] is an attractive candi-
date notion of bisimulation for the π-calculus for a number of different reasons.
First, it constitutes a reasonably full congruence, i.e., it is preserved by all op-
erators including input prefix. Second, it allows for simple axiomatizations
(for finite terms). Third, it is rather straightforward to build tools that check
open bisimilarity (see the MWB [Vic94] or the ABC [Bri03]).

The current paper arose from our attempt to “smoothly” generalise the
definition of open bisimulation from the π-calculus to the spi-calculus, an ex-
tension of the former by cryptographic primitives to be used in the description
of security protocols. It turns out that this is not easily doable, for reasons
that we try to explain in the remainder of this Introduction. Driven by the
quest for a meaningful definition of open-style bisimulation for the spi-calculus,
we came up with a proposal that we then observed can also be meaningfully
projected down to the case of the π-calculus. The resulting notion and its
comparison to the original definition is the main contribution of this paper.

The flurry of notions of bisimulation for the π-calculus 1 , ranging from
ground over early and late to open, results mainly from the different possible
treatments of simulated symbolic input transitions, e.g., when

simulating P
a(x)−−→ P ′ by Q

a(x)−−→ Q′.

? A long version is found at http://lamp.epfl.ch/~sbriais/.
??Supported by the Swiss National Science Foundation, grant No. 21-65180.1
1 Luckily, all of these notions collapse in certain sub-calculi, for example like the asyn-
chronous π-calculus, that are still expressive enough for most practical purposes.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Briais, Nestmann

The problem is that after the execution of a symbolic input on channel a,
the input variable 2 x becomes free in the resulting continuation processes P ′

and Q′. Considering the possible instantiations of this input variable by re-
ceived messages can be done either not at all (as in ground), or (as in early)
before the simulating transition is chosen, or (as in late) right afterwards—or
(as in open) considering all possible substitutions (not only affecting the just
freed input variable) even before starting any bisimulation game. The latter
case can also be seen as “very late” or “lazy” since all possible instantiations
of the input variable will be checked the next time we try to continue with
the bisimulation game with P ′ and Q′.

For clarity of the following explanations, in an application P{M/x} of a
substitution, where M replaces all (free) occurrences of x in P , let us use the
terms substitution subject for x and substitution object for M .

What do we actually mean by all possible instantiations? By definition,
only free names can ever be affected as substitution subjects. In a process,
there are three kinds of free name. A free name may be free because:

(i) either it was already initially free,
(ii) or it has become free after having done an input (or been substituted),
(iii) or it has become free after having been created as a local name, and

afterwards output to some observing process.

We argue 3 that names of the latter kind are constant, i.e., they should not be
considered as substitution subjects, because they were created freshly and thus
appropriately chosen. (We formally support this point of view in Lemma 3.6,
and show that it gives rise to an equivalent freshness-aware notion of bisimula-
tion.) In contrast, the first two kinds shall be considered. On the other hand,
also not all substitution objects may be acceptable. More precisely: depending
on the history of the ongoing bisimulation game, certain instantiations may
sometimes be forbidden. There may be two different reasons for this.

The first reason concerns names names of kind (i) or (ii), say a, that
were free in a process before another name, say b, got freshly created and
extruded. Due to the freshness, any subsequent substitution for subject amust
not mention b as substitution object, so not to retrospectively invalidate this
freshness property. In open bisimulation, represented by an indexed family
of binary relations, the indexing component is precisely a structure called
distinction that keeps track of inequalities like a 6= b, as required above.

The second reason concerns only names of kind (ii) and resides on the intu-
ition that substitution objects represent messages that may be sent from the
observer to the observed process. In the π-calculus, there is no limitation be-
yond the above distinctions: the observer may send any name that it may have

2 Note that we do not introduce different syntactic categories for (constant) names and
variables. It is only for convenience of the explanation that we call receiving names in
bound input position “input variables”.
3 And here we slightly differ from Sangiorgi’s definition of open bisimulation.

2

Briais, Nestmann

received earlier, or it may simply invent names on its own. However, it is pre-
cisely here that severe difficulties arise when moving to the spi-calculus. The
main reason there is the presence of complex messages Ekn(· · ·Ek1(M) · · ·),
which may dispose of some deeply nested structure that involves so-called en-
cryption keys k1 . . . kn. Substitution objects are then all messages that the
observer (potentially a malicious attacker) could possibly have generated at
the moment the message was input. This generation is not arbitrary; it is con-
strained by the knowledge that the observer has acquired up to the moment
of interaction. For example, consider the spi-calculus process

P
def
= (νk) (νm) a〈Ek(m)〉.a(x).a〈k〉.[x=m]a〈a〉.0

where (νk) denotes the generation of a fresh name, a〈k〉 the sending of name k
over channel name a, a(x) the reception of a message over channel name a
with input variable x, Ek(m) the previously mentioned encryption of datum m
with key k, and [x=m] a test of equality of names. Intuitively, the output
a〈a〉 is impossible, because it would require that x could have been substituted
by m, which is itself impossible, because the private datum m was passed on
to the observer only within message Ek(m) encrypted with the private key k;
however, this key was unknown to the observer when it sent the message that
got received by a(x) — it was published only afterwards.

Here, a simple distinction k 6= m is not sufficient to characterise disallowed
substitutions because neitherm, nor Eb(m), nor Ek(Eb(m)), etc., are permitted
substitution objects. In contrast, the message Ek(m) that the observer learnt
in the first exchange could have been sent back to the process.

The study of other notions of bisimulation for the spi-calculus (see an
overview in [BN02]) resulted in careful analyses of observer (attacker) knowl-
edge and various kinds of data structures for the representation of such knowl-
edge. Typically, all messages that were emitted by an observed process in the
course of a bisimulation game are stored. Likewise, in particular in the pro-
posal of symbolic bisimulation of [BBN04], some timing or ordering informa-
tion is stored that keeps track of which messages were known to the observer
at the moment of the reception of a message by a process.

Together with the above-mentioned freshness-awareness, we choose to rep-
resent the observer knowledge for our new notion of open bisimulation by
triples of the form (O, V ,≺), where ≺ ⊆ O × V . O is the set of the emit-
ted messages, while V is the set of the substitutable names. Note that the
freshly created and subsequently extruded names are C = n(O) \ n(V) and
we add the condition that O ∩ V = ∅. The relation ≺ indicates for each
substitutable variable x ∈ V , which part of O was known when x was input.
Thus, in bisimulation games, this kind of environment structure permits to
treat substitutable names of the kinds (i) and (ii) in the same way.

While the above motivated way to characterise permissible substitutions
was driven by an analysis of spi-calculus phenomena, it also makes sense to
apply it to the much simpler π-calculus, which is the goal of this paper. In

3

Briais, Nestmann

P,Q ::= 0 E(x).P E〈F 〉.P φP P |Q P +Q !P (νx)P

Table 1
Syntax of processes P

M,N ::= a (messages M)
E,F ::= a (expressions E)
φ, ψ ::= tt φ∧ψ [E=F] (formulae F)

Table 2
Syntax of messages, expressions and formulae for the π-calculus

M,N ::= a EN(M) (messages M)
E,F ::= a EF (E) DF (E) (expressions E)
φ, ψ ::= tt φ∧ψ [E=F] [E :N] (formulae F)

Table 3
Syntax of messages, expressions and formulae for the spi-calculus

§2, we recall the original definition of open bisimulation in the π-calculus, for
which we use a unified presentation of the π-calculus and the spi-calculus. In
§3, we develop the details of our new proposal and prove its coincidence with
the original notion. In §4, we comment on the advantages of our new notion.

2 Open bisimulation

2.1 Syntax of the π-calculus and the spi-calculus

A countably infinite set a, b, c, . . . , k, l,m, n, . . . , x, y, z, . . . of names N is pre-
supposed. In the following, we write z̃ for a (possibly empty) finite sequence
of names z1, z2, . . . , zn. If z̃ is such a sequence, then we write {z̃} for the set of
names appearing in the sequence z̃. In order to unify the presentation of the
π-calculus and the spi-calculus, we have parametrised the syntax of processes
Table 1 by messages, expressions and formulae. Table 2 read in conjunction
with Table 1 gives the syntax of the π-calculus, whereas for the spi-calculus,
Table 3 and Table 1 should be considered.

The set of names appearing in a message M is written n(M). In the case of
the π-calculus, it is simply the singleton set containing M (since M is a name).
Similarly, the set of the names appearing in an expression E is written n(E)
and the set of the names appearing in a formula φ is written n(φ). Finally, the
set of free names fn(P) and bound names bn(P) of a process P are defined
as usual taking into account that the name x is bound in P by the constructs
E(x).P and (νx)P . These notions are straightforwardly lifted to sets.

4

Briais, Nestmann

Definition of J·K : E →M∪ {⊥}

JaK def
= a

JEF (E)K def
= EN(M) if JEK = M ∈M and JF K = N ∈M

JDF (E)K def
= M if JEK = EN(M) ∈M and JF K = N ∈M

JEK def
= ⊥ in all other cases

Definition of J·K : F → {true, false}

JttK def
= true

Jφ∧ψK def
= JφK and JψK

J[E=F]K def
= true if JEK = JF K = M ∈M

J[E :N]K def
= true if JEK = a ∈ N

JφK def
= false in all other cases

Definition of c(·) : F → 2M∪{⊥}

c(tt)
def
= ∅

c(φ∧ψ)
def
= c(φ) ∪ c(ψ)

c([E=F])
def
= ∅

c([E :N])
def
= {JEK}

Table 4
Evaluation of expressions and formulae

2.2 Labelled (late) semantics

Table 4 defines the straightforward evaluation of expressions and formulae, as
well as some name constraints of a given formula. Table 5 defines a labelled
transition P

µ−→S P ′ where µ is an action and S is a set of names. The set
S collects the names that should be names in order for the transition to be
enabled. In the π-calculus, where only names are considered, it can be simply
ignored but it is useful for the case of spi-calculus. These names are those
that are used as channels or that are assumed to be names by formulae.

Upon this transition system, the late semantics of the π-calculus and the
spi-calculus is given by: P

µ−→ P ′ if and only if there is S such that P
µ−→S P

′.

The syntax of actions µ is given by:

µ ::= τ a(x) (νz̃) aM (actions)

The bound output actions (νz̃) aM are such that {z̃} ⊆ n(M). In the case
of the π-calculus, since messages M are reduced to names, we have two cases:

5

Briais, Nestmann

Input
JEK = a ∈ N

E(x).P
a(x)−−→{a} P

Output
JEK = a ∈ N JF K = M ∈M

E〈F 〉.P a M−−→{a} P

Close-l
P

a(x)−−→S P
′ Q

(νz̃) a M−−−−→S′ Q
′

P |Q τ−→S∪S′ (νz̃) (P ′{M/x} |Q′)
{z̃} ∩ fn(P) = ∅

Open
P

(νz̃) a M−−−−→S P
′

(νz′)P
(νz′z̃) a M−−−−−−→S\{z′} P

′
z′ ∈ n(M) \ {a, z̃}

Res
P

µ−→S P
′

(νz)P
µ−→S\{z} (νz)P ′

z 6∈ n(µ) Guard
P

µ−→S P
′

φP
µ−→S∪c(φ) P

′
JφK = true

Par-l
P

µ−→S P
′

P |Q µ−→S P
′ |Q

bn(µ) ∩ fn(Q) = ∅ Sum-l
P

µ−→S P
′

P +Q
µ−→S P

′

Rep
P | !P µ−→S P

′

!P
µ−→S P

′
Alpha

P =α P
′ P ′ µ−→S P

′′

P
µ−→S P

′′

Table 5
The late semantics of the π-calculus

either z̃ is the empty sequence and (νz̃) aM is simply written aM or z̃ = M
and the bound output action is simply (νz) a z where z = M .

The set of names n(µ) is defined by:

n(τ) := ∅, n(a(x)) := {a, x}, n((νz̃) aM) := {a, z̃} ∪ n(M).

The set of bound names bn(µ) of µ is defined by:

bn(τ) := ∅, bn(a(x)) := {x}, bn((νz̃) aM) := {z̃}.

Moreover, if µ = a(x) or µ = (νz̃) aM , we define ch(µ)
def
= a.

2.3 Open bisimulation in the π-calculus

As mentioned in the Introduction, open bisimulation was introduced by San-
giorgi [San96]. It relies on the notion of distinction to keep track of inequalities
of names in order to constrain the set of substitutions to be considered in the
respective bisimulation game.

Definition 2.1 (distinction) A binary relation D ⊆ N × N on names is
called distinction if it is finite, symmetric, and irreflexive.

By n(D) we denote the set of names contained in D.

6

Briais, Nestmann

If A, B are two sets of names, we define the distinction A ⊗ B to be
{(x, y) ∈ A×B ∪B × A | x 6= y}. A 6= abbreviates A⊗ A.

Definition 2.2 (substitution) A substitution σ is a total function N →M
such that its support supp(σ) := {x | xσ 6= x} is a finite set.

The co-support of σ is cosupp(σ) := {xσ | x ∈ supp(σ)}.
The set of names of σ is n(σ) := supp(σ) ∪ n(cosupp(σ)).

As said previously, distinctions are to prevent substitutions to fuse two
names that were assumed to be different at some point. Hence the definition
of so-called respectful substitutions.

Definition 2.3 (respectfulness) Let D be a distinction, σ a substitution.

σ respects D, written σ . D, if and only if xσ 6= yσ for all (x, y) ∈ D.

If σ respects D, then Dσ is defined as {(xσ, yσ) | (x, y) ∈ D}.
Note that sinceM = N in the case of the π-calculus, Dσ is itself a distinction.

An open bisimulation is a distinction-indexed family of symmetric relations
between processes that satisfies some condition.

Definition 2.4 (open bisimulation) The family (RD)D∈D (where D is a
set of distinctions) of symmetric relations is an open bisimulation if for all
D ∈ D, for all substitutions σ such that σ . D, for all (P,Q) ∈ RD, whenever

Pσ
µ−→ P ′ (with bn(µ) fresh), there exists Q′ such that Qσ

µ−→ Q′ and

• if µ = (νz) a z for some a and z, D′ ∈ D and (P ′, Q′) ∈ RD′

where D′ = Dσ ∪ {z} ⊗ (fn((P +Q)σ) ∪ n(Dσ))
• otherwise, Dσ ∈ D and (P ′, Q′) ∈ RDσ.

The induced equivalence is defined as usual, modulo the indexing component.

Definition 2.5 (open bisimilarity) Let P,Q ∈ P and D a distinction. We
say that P and Q are open D-bisimilar—written P ≈D

O Q—if there exists an
open bisimulation (RD)D∈D such that D ∈ D and (P,Q) ∈ RD.

Instead of families of binary relations between processes we may also use
ternary relations, which is often done in the context of the spi-calculus. Thus,
instead of (P,Q) ∈ RD, we then write (D,P,Q) ∈ R, whereD is usually called
environment, and the ternary relation is called environment-sensitive. It is
mainly for easier readability that we adopt the ternary style in the following,
although a bit of care needs to be taken to lift the three equivalence properties
to the ternary format. For example, a ternary environment-sensitive relation
is called symmetric if and only if (e, P,Q) ∈ R ⇔ (e,Q, P) ∈ R.

3 Open bisimulation, reloaded

Before proceeding to our new proposal to define open-style bisimulation, we
provide a slightly different, but equivalent variant of the previously given
standard notion. This variant will make it easier to relate to our new proposal.

7

Briais, Nestmann

3.1 A freshness-aware variant of open bisimulation

In this section, we define the notion of F-open bisimulation. The simple idea
is, as we mentioned already in the Introduction, to prevent names that were
previously (in the course of a bisimulation game) created freshly from being
considered as permissible substitution subjects.

The knowledgeable reader may be reminded of the notion of quasi-open
bisimulation, proposed by Sangiorgi and Walker [SW01b], and later on revis-
ited by Fu [Fu05]. There, the use of distinctions as environments was adapted
to the use of a simple set of names that were once freshly created and therefore
deemed to remain constant. The resulting quasi-open bisimulation was recog-
nised as being strictly weaker than open bisimulation. Sangiorgi and Walker
intuitively summarised this difference as: “In open bisimilarity, when a name
z is sent in a bound-output action, the distinction is enlarged to ensure that z
is never identified with any name that is free in the processes that send it. In
quasi-open bisimilarity, in contrast, at no point after the scope of z is extruded
can a substitution be applied that identifies z with any other name.” [SW01b].

Like quasi-open bisimulation, the following definition also explicitly keeps
track of previously freshly created names. However, it does not use this infor-
mation to prevent the fusion of such fresh names like quasi-open bisimulation
does. It only use this information to implement the idea that fresh names can
be considered as constant names once chosen, such that they should afterwards
never be used as substitution subjects. In fact, Lemmas 3.6 and 3.7 show that
this change still faithfully retains the equational power of open bisimulation.

Definition 3.1 (F-environment) The pair (D,C) where D is a distinction
and C is a finite subset of names is a F-environment if C 6= ⊆ D. The set of
all F-environments is written F .

The distinction D plays the same role as in open bisimulation, while the
set C indicates which names can be considered as constant names. It is used
to refine the notion of respectfulness, as follows.

Definition 3.2 (respectful substitution)
Let (D,C) be a F-environment and σ a substitution. We say that σ respects
(D,C) – written σ I (D,C) – if σ . D and supp(σ) ∩ C = ∅.
Definition 3.3 (F-relation) A F-relation R is a subset of F × P × P.

Definition 3.4 (F-open bisimulation) A symmetric F-relation R is a F-
open bisimulation, if for all ((D,C), P,Q) ∈ R and for all substitutions σ

such that σ I (D,C), whenever Pσ
µ−→ P ′ (with bn(µ) fresh), there exists Q′

such that Qσ
µ−→ Q′ and

• if µ = (νz) a z for some a and z, ((D′, C ∪ {z}), P ′, Q′) ∈ R
where D′ = Dσ ∪ {z} ⊗ (fn((P+Q)σ) ∪ n(Dσ))

• otherwise, ((Dσ,C), P ′, Q′) ∈ R
The two only differences compared to open bisimulation is, first, that the

8

Briais, Nestmann

notion of respectfulness is slightly modified such that it takes into account the
constant names of a F-environment and, second, that the extruded names are
being accumulated in the pool of constant names of F-environments.

Definition 3.5 (F-open bisimilarity) Let P,Q ∈ P and (D,C) ∈ F .

P and Q are F-open (D,C)-bisimilar, written P ≈(D,C)
F Q, if there is a

F-open bisimulation R such that ((D,C), P,Q) ∈ R.

The two notions of bisimilarity are equivalent in the following sense.

Lemma 3.6 Let P,Q ∈ P and (D,C) ∈ F .

If P ≈(D,C)
F Q, then P ≈D

O Q.

Proof. The key of the proof is that it is possible, if σ . D and C 6= ⊆ D, to
find a substitution σ′ and a bijective substitution θ such that σ = σ′θ and
σ′ I (D,C).

Lemma 3.7 Let P,Q ∈ P and D a distinction.

If P ≈D
O Q, then ∀C : C 6= ⊆ D ⇒ P ≈(D,C)

F Q.

Proof. This result is obvious because σ I (D,C) implies σ . D.

3.2 A knowledge-aware variant of open bisimulation

As motivated in the Introduction, we propose a bisimulation that makes ex-
plicit the attacker who plays against the two players P and Q involved in the
bisimulation game. The knowledge of the attacker is stored in K-environments
of the form (O, V ,≺). The set of names V represents all the substitutable free
names (those that were initially free or become free after an input action).
The set of messages O contains all the messages that were emitted by P and
Q, except the names of V . Finally, the relation ≺ indicates for each sub-
stitutable name x the available knowledge acquired by the attacker at the
moment the name x was input. This relation characterises the admissible
messages received from the attacker.

Definition 3.8 (K-environment) A K-environment is a triple (O, V ,≺) such
that O ∪ V is a finite subset of N , O ∩ V = ∅ and ≺ ⊆ O× V . The set of all
K-environments is K.

If E is a K-environment, and n ∈ N , it is possible to extend E with n in
two ways. Either n is meant to be an emitted name and it is added to the
constant part of E, or n is meant to be a received name and it is added to the
variable part of E and put in relation with all already emitted names. If n is
already contained in E, its addition to E has no effect.

Definition 3.9 (Extension of a K-environment) Let E = (O, V ,≺) be a
K-environment and n ∈ N . We define

(i) E⊕On
def
= (O′, V ,≺) where O′ def

= O∪{n} if n 6∈ V and O′ def
= O otherwise.

(ii) if n 6∈ O ∪ V , E ⊕V n
def
= (O, V ∪ {n} ,≺′) where ≺′ def

= ≺ ∪O × {n}.
9

Briais, Nestmann

Keeping in mind that a substitution represents the potential inputs the
attacker could have generated, we define the set of respectful substitutions.
A substitution σ respects a K-environment E = (O, V,≺) if it affects only
substitutable names (those in V) and if for each x ∈ V , it takes only values
that were generatable at the moment when x was input. This means that such
a name x can use any name in V (this corresponds to fusing two substitutable
names), or use any name in O that was known by the attacker when x was
input (this is indicated by the relation ≺) or use any new fresh name not
contained in E (this corresponds to the creation of free names by the attacker).
In the π-calculus, since a substitution replaces a name by a name, this can be
easily and concisely expressed by:

Definition 3.10 (respectful substitution)
A substitution σ respects a K-environment E = (O, V ,≺), written σ II E, if:

(i) supp(σ) ⊆ V
(ii) ∀x ∈ V : xσ ∈ O ⇒ xσ ≺ x

Roughly speaking, in spi-calculus, xσ is built using names from V , the mes-
sages from O that are permitted by ≺ and some freshly generated names. In
π-calculus, this is simplified to xσ ≺ x because xσ ∈ N .

Any K-environment E = (O, V ,≺) may, under the impact of some a re-
spectful substitution σ, be straightforwardly updated to Eσ. In general, the
knowledge contained in O should be updated to Oσ. However, in the π-
calculus, substitution deals only with names, and since O ∩ V = ∅ we have
Oσ = O. The set V of substitutable names should keep all the names that
were not affected by σ, and in addition list all the new names that were created
by the attacker, as visible in the substitution objects. 4 Particular care must
be taken when computing the new relation ≺′ because of the possibility that
σ fuses two names of V . Fusing two names x and y (by xσ = yσ) corresponds
to a voluntary loss of power of the attacker: the only admissible values for the
fused name are those that were admissible for both x and y.

Definition 3.11 (K-environment updating)
Let E = (O, V ,≺) be a K-environment and σ a substitution such that σ II E.

The updated environment is Eσ def
= (O′, V ′,≺′) of E by σ where

V ′ def
= (V \ supp(σ)) ∪ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O}

≺′ def
= {(n, x′) | ∀x ∈ V : x′ ∈ n(xσ) ⇒ n ≺ x}

Definition 3.12 (K-relation) A K-relation R is a subset of K×P×P such
that ∀((O, V ,≺), P,Q) ∈ R : fn(P+Q) ⊆ O ∪ V .

The new variant of open bisimulation now simply keeps track of whether
dynamically freed names are substitutable or not. If they are, then we explic-

4 The fact that we put the names created by the environment in the substitutable part gives
a “lazy” flavour to our definition, because it allows the attacker to uncover itself gradually.

10

Briais, Nestmann

itly state that previously created names may be used in future substitutions.
Names that will be created later on—by the process—will not be permitted.

Definition 3.13 (K-open bisimulation) A symmetric K-relation R is a
K-open bisimulation, if for all (E,P,Q) ∈ R and for all substitutions σ such

that σ II E, whenever Pσ
µ−→ P ′ (with bn(µ) fresh), there exists Q′ such that

Qσ
µ−→ Q′ and

• if µ = τ , then (Eσ, P ′, Q′) ∈ R
• if µ = a(x) then (Eσ ⊕V x, P

′, Q′) ∈ R
• if µ = (νz) a z or µ = a z then (Eσ ⊕O z, P

′, Q′) ∈ R
We see in this definition that indeed O collects all the messages emitted by P
and Q (but the addition Eσ ⊕O z has only effect when µ = (νz) a z because E
contains all free names of P and Q) and V collects all substitutable names.

Definition 3.14 (K-open bisimilarity) Let P,Q ∈ P and E ∈ K.

P and Q are K-open E-bisimilar, written P ≈E
K Q, if there is a K-open

bisimulation R such that (E,P,Q) ∈ R.

In the π-calculus, it is possible to represent any K-environment by some F-
environment. The idea is that all names in O should be kept pairwise distinct
(they were fresh names) and for all (n, x) ∈ O ∪ V , if n cannot be used to
generate x (i.e. ¬n ≺ x), then n and x should be distinct (n 6= x).

Definition 3.15 (F-environment of a K-environment)
Let E = (O, V ,≺) be a K-environment. We define f(E) = (D,O) where
D = O 6= ∪

⋃
n∈O∧x∈V ∧¬n≺x {(n, x), (x, n)}. Clearly, f(E) ∈ F .

The K-open bisimilarity is sound with respect to F-open bisimilarity.

Lemma 3.16 Let P,Q ∈ P and (O, V ,≺) ∈ K such that fn(P+Q) ⊆ O ∪ V .
Then we have:

P ≈(O,V ,≺)
K Q⇒ P ≈f((O,V ,≺))

F Q

Under the condition that the F-environment (D,C) is representable by a
K-environment E, F-open (D,C)-bisimilarity is sound with respect to K-open
E-bisimilarity.

Lemma 3.17 Let P,Q ∈ P and (D,C) ∈ F . Then we have

P ≈(D,C)
F Q⇒

∀V ,≺ :
C ∩ V = ∅

∧ fn(P+Q) ⊆ C ∪ V
∧ (D,C) = f((C, V ,≺))

⇒ P ≈(C,V ,≺)
K Q

The proof of this lemma also shows that F-environments that are not repre-
sentable by any corresponding K-environment are negligible.

It is known that open D-bisimilarity is a D-congruence, i.e., it is preserved
by all contexts in which the occurrence of the hole is not underneath an input
prefix binding a name in D (cf. [SW01a]). We conjecture that, based on our
new notion of K-open-bisimilarity and with respect to (D,C) = f((C, V ,≺)),

11

Briais, Nestmann

we can define a bigger classes of contexts that preserve open bisimilarity. The
idea is (1) to admit contexts with the same above condition w.r.t. names C as
D-congruence imposes w.r.t. D, and furthermore (2) to admit contexts where
the hole occurs underneath an input prefix that binds a name x of V , but
only if, in addition, every name of {n ∈ C | ¬n ≺ x} appears underneath a
respective restriction on the “path” from the hole-binding input prefix for x
to the hole. We leave a formal treatment of this issue for future work, and
just explain the conjecture by means of a simple example.

Example 3.18 Let P = x | y and Q = x.y + y.x.

It is known and easily verifiable that P ≈D
O Q with D = {(x, y), (y, x)}.

Let C = {y} and V = {x}, and note that (D,C) = f((C, V, ∅)).
Observe that P ≈(C,V ,≺)

K Q.

Now, let us regard the context X[·] = a(x).(νy) [·].
Then X[P] ≈∅

O X[Q], although X[·] is not considered by D-congruence.

However, X[·] follows our above informal rule of admissible contexts.

Finally, just note that also X[P] ≈(∅,{a},∅)
K X[Q].

In summary, we can conclude from the previous results our new notion of
open-style bisimilarity semantically coincides with the original style.

Theorem 3.19 P ≈∅
O Q⇔ P ≈(∅,∅)

F Q⇔ P ≈(∅,fn(P+Q),∅)
K Q

4 Conclusion and future work

The main contribution of this paper is the definition of a new notion of open-
style bisimulation in the π-calculus guided by knowledge-sensitive notions of
bisimulation that arose in the context of the spi-calculus. We have proved
that the new notion corresponds to the original open bisimilarity in a precise
and informative way that indicates improved congruence properties.

The new definition of open-style bisimulation can now indeed be smoothly
extended in the spi-calculus (a first proposal is given in appendix but we
can mention close work such as [Bri02] or [BBN04]). Our proposal in spi-
calculus uses the same environment shape as our proposal in π-calculus. But
it is necessary, as noticed by Abadi and Gordon in [AG98], to introduce also a
notion of indistinguishability. Some type constraints should also be ensured: a
free name used as a channel should never be substituted by anything else than
a name. Hence, the environment we propose for spi-calculus are quadruple
(h, v, ≺ , γ) where h stores all the emitted messages and moreover implements
this notion of indistinguishability, v contains all the substitutable names, ≺
governs which messages can be used to generate inputs for names in v and γ
stores which names should keep the type of names.

Next, we plan to study congruence properties of our K-open bisimilarity.
We will do the same for our extension to the spi-calculus and also study its
relation to symbolic bisimilarity as defined in [BBN04].

12

Briais, Nestmann

References

[AG98] M. Abadi and A. D. Gordon. A Bisimulation Method for Cryptographic
Protocols. Nordic Journal of Computing, 5(4):267–303, Winter 1998. An
extended abstract appeared in the Proceedings of ESOP ’98, LNCS 1381,
pages 12–26.

[AG99] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. Information and Computation, 148(1):1–70, 1999.

[BBN04] J. Borgström, S. Briais and U. Nestmann. Symbolic Bisimulation in the
Spi Calculus. In P. Gardner and N. Yoshida, eds, Proceedings of CONCUR
2004, volume 3170 of LNCS, pages 161–176. Springer Verlag, Sept. 2004.

[BN02] J. Borgström and U. Nestmann. On Bisimulations for the Spi Calculus.
In H. Kirchner and C. Ringeissen, eds, Proc. AMAST’02, volume 2422 of
Lecture Notes in Computer Science, pages 287–303. Springer, 2002. Long
version to appear in Mathematical Structures in Computer Science.

[Bri02] S. Briais. Towards open bisimulation in the spi calculus. Mémoire de
D.E.A., Université Paris VII - Denis Diderot, 2002.

[Bri03] S. Briais. ABC Bisimulation Checker. EPFL, 2003. Available from http:
//lamp.epfl.ch/~sbriais/abc/abc.html.

[Bri04] S. Briais. Formal proofs about hedges using the Coq proof assistant, 2004.
http://lamp.epfl.ch/~sbriais/spi/hedges/hedge.html.

[Fu05] Y. Fu. On Quasi-Open Bisimulation. Theoretical Computer Science,
338:96–126, 2005.

[San96] D. Sangiorgi. A Theory of Bisimulation for the π-calculus. Acta
Informatica, 33:69–97, 1996. Earlier version published as Report ECS-
LFCS-93-270, University of Edinburgh. An extended abstract appeared in
the Proceedings of CONCUR ’93, LNCS 715.

[SW01a] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[SW01b] D. Sangiorgi and D. Walker. Some results on barbed equivalences in pi-
calculus. In Proc. CONCUR ’01, volume 2154 of LNCS. Springer Verlag,
2001.

[Vic94] B. Victor. A Verification Tool for the Polyadic π-Calculus. Licentiate
thesis, Department of Computer Systems, Uppsala University, Sweden,
May c© 1994. Available as report DoCS 94/50.

13

http://lamp.epfl.ch/~sbriais/abc/abc.html
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://lamp.epfl.ch/~sbriais/spi/hedges/hedge.html

Briais, Nestmann

A Proofs

Lemma A.1 Let D be a distinction and σ a substitution such that σ . D.
Let C be a finite set of names such that C 6= ⊆ D. Then there exists σ′ a
substitution and θ a bijective substitution such that σ′ I (D,C) and σ = σ′θ
and n(θ) ⊆ C ∪ Cσ.

Proof. We first prove that σ is injective on the finite set C.

Indeed, let x, y ∈ C such that x 6= y. Since C 6= ⊆ D, we have (x, y) ∈ D.
Moreover, we have σ . D, so we have xσ 6= yσ. This proves that σ is injective
on C.

According to Lemma 1.4.11 of [SW01a], we have the existence of a bijec-
tive substitution θ such that σ and θ agree on C. By construction, we have
moreover that n(θ) ⊆ C ∪ Cσ.

Let σ′ = σθ−1. Then σ′ is a substitution such that σ = σ′θ.

It remains now to prove that σ′ I (D,C).

We first show that σ′ . D. Let x, y ∈ D. Since σ . D, we have that
xσ 6= yσ. Now, since θ−1 is bijective, we have also that xσθ−1 6= yσθ−1, hence
xσ′ 6= yσ′ and σ′ . D.

Now we show that supp(σ′) ∩ C = ∅. Let x ∈ C. Since σ and θ agree on
C, we have xσ = xθ. So xσ′ = xσθ−1 = xθθ−1 = x and x 6∈ supp(σ′). Hence
supp(σ′) ∩ C = ∅.

Finally, we have proved that σ′ I (D,C).

Lemma A.2 (Lemma 3.6) Let P,Q ∈ P and (D,C) ∈ F .

If P ≈(D,C)
F Q, then P ≈D

O Q.

Proof. Let R be a F-open bisimulation such that ((D,C), P,Q) ∈ R.

Let D = {D | ∃C,P,Q : ((D,C), P,Q) ∈ R}
For D ∈ D and θ a bijective substitution, let

R′
Dθ = {(Pθ,Qθ) | ∃C : ((D,C), P,Q) ∈ R}

Let D′ = {Dθ | D ∈ D∧ θ bijective substitution}.
We have that (R′

D)D∈D′ is an open bisimulation.

Indeed, let D′ ∈ D′, σ a substitution such that σ . D′ and (P0, Q0) ∈ R′
D′ .

By definition, there isD ∈ D and θ a bijective substitution such thatD′ = Dθ.
Moreover, there exists C such that ((D,C), P,Q) ∈ R and P0 = Pθ and
Q0 = Qθ.

Since σ . Dθ, we have θσ . D. We then use Lemma A.1 with θσ and C.
We have the existence of a substitution σ′ and a bijective substitution θ′ such
that θσ = σ′θ′, σ′ I (D,C) and n(θ′) ⊆ C ∪ Cθ.

Assume now that P0σ
µ−→ P ′

0 (with bn(µ) fresh), i.e. Pθσ
µ−→ P ′

0, i.e.

Pσ′θ′
µ−→ P ′

0. Since θ′ is bijective, we have Pσ′
µθ′−1

−−−→ P ′
0θ
′−1.

14

Briais, Nestmann

Since ((D,C), P,Q) ∈ R and σ′ I (D,C), by definition, there exists Q′

such that Qσ′
µθ′−1

−−−→ Q′ and

• if µθ′−1 = (νz) a z then ((D′′, C ∪ {z}), P ′
0θ
′−1, Q′) ∈ R where D′′ = Dσ′ ∪

{z} ⊗ (fn((P +Q)σ′) ∪ n(Dσ′))
• otherwise ((Dσ′, C), P ′

0θ
′−1, Q′) ∈ R

Let Q′
0 = Q′θ′, then we have Q′ = Q′

0θ
′−1 and Qσ′

µθ′−1

−−−→ Q′
0θ
′−1.

Since θ′−1 is bijective, we then have Qσ′θ′
µ−→ Q′

0, i.e. Qθσ
µ−→ Q′

0, i.e.

Q0σ
µ−→ Q′

0.

• if µ = (νz) a z, then µθ′−1 = (νz) a z and we have by assumption ((D′′, C ∪
{z}), P ′

0θ
′−1, Q′

0θ
′−1) ∈ R where D′′ = Dσ′∪{z}⊗ (fn((P +Q)σ′)∪n(Dσ′)).

So, by definition, we have (P ′
0, Q

′
0) ∈ R′

D′′θ′ . But D′′θ′ = Dσ′θ′ ∪ {zθ′} ⊗
(fn((P + Q)σ′)θ′ ∪ n(Dσ′θ′)). So D′′θ′ = Dθσ ∪ {zθ} ⊗ (fn((P + Q)θσ) ∪
n(Dθσ)), i.e. D′′θ′ = D′σ ∪ {z} ⊗ (fn((P0 + Q0)σ) ∪ n(D′σ)) (because z is
fresh and thus z 6∈ n(θ′)).

• otherwise ((Dσ′, C), P ′
0θ
′−1, Q′

0θ
′−1) ∈ R so (P ′

0, Q
′
0) ∈ R′

Dσ′θ′ and Dσ′θ′ =
Dθσ = D′σ.

Hence, (R′
D)D∈D′ is an open bisimulation.

Lemma A.3 Let E = (O, V , ≺) be a K-environment and σ a substitution.
Then

σ II E ⇔ supp(σ) ⊆ V ∧σ I f(E)

Proof. Let D such that f(e) = (D,O).

• First assume that σ II E.
By definition, we have supp(σ) ⊆ V and ∀x ∈ V : xσ ∈ O ⇒ xσ ≺ x.
Since supp(σ) ⊆ V and O ∩ V = ∅, we have supp(σ) ∩O = ∅.
Let (x, y) ∈ D. We have to show that xσ 6= yσ. There are four cases

(according to the definition of D): either x, y ∈ O with x 6= y, or x ∈ O,
y ∈ V and 6= x ≺ y or the two other symmetric cases.

By case distinction, assume that x, y ∈ O and x 6= y. Since supp(σ)∩O =
∅, we have xσ = x, yσ = y, hence xσ 6= yσ.

Now assume that x ∈ O, y ∈ V and ¬x ≺ y. Since supp(σ) ∩ O = ∅,
we have xσ = x. Assume by contradiction that yσ = xσ = x, then we
have yσ ∈ O. Thus, we have yσ ≺ y which is equivalent to x ≺ y and thus
leading to a contradiction. So xσ 6= yσ.

The two other symmetric cases are treated in the same way.
Hence σ I f(E).

• Assume now that supp(σ) ⊆ V ∧σ I f(E).
We have then that σ . D.
By hypothesis, supp(σ) ⊆ V .
Let x ∈ V and assume that xσ ∈ O. We have to show that xσ ≺ x.

Assume by contradiction that ¬xσ ≺ x. Then, by definition of D, we have
that (xσ, x) ∈ D. Since σ respects D, we have xσσ 6= xσ, but since xσ ∈ O

15

Briais, Nestmann

and supp(σ) ∩O = ∅, we have xσσ = xσ, obtaining a contradiction.
Hence σ II E.

Lemma A.4 Let E = (O, V , ≺) be a K-environment, D such that f(E) =
(D,O) and σ a substitution such that σ II E. Then f(Eσ) = (Dσ,O).

Proof. Let (D′, O) = f(Eσ). We have to show that D′ = Dσ.

By definition, D′ = O 6= ∪
⋃

n∈O∧x′∈V ′ ∧¬n≺′x′ {(n, x′), (x′, n)} where V ′ =
(V \ supp(σ)) ∪ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O} and ≺ ′ is defined by

n ≺ ′x′ ⇔
∧

x∈V ∧x′∈n(xσ)

n ≺ x

Let (x′, y′) ∈ D′. If (x′, y′) ∈ O⊗O then (x′, y′) ∈ Dσ since supp(σ)∩O =
∅. So, assume that x′ ∈ O, y′ ∈ V ′ and ¬x′ ≺ ′y′. By definition, we have
that there exists in y ∈ V such that y′ ∈ n(yσ) and ¬x′ ≺ y. So, we have,
by definition of D, (x′, y) ∈ D and since x′σ = x′ and yσ = y′, we have thus
(x′, y′) ∈ Dσ. So D′ ⊆ Dσ.

Let (x′, y′) ∈ Dσ. By definition, there exists (x, y) ∈ D such that x′ = xσ
and y′ = yσ. If (x, y) ∈ O ⊗O, then x′ = x and y′ = y and thus (x′, y′) ∈ D′.
Now assume that x ∈ O, y ∈ V and ¬x ≺ y. Since supp(σ) ∩O = ∅, we have
x′ = x. If y′ ∈ O then (x′, y′) ∈ O⊗O and (x′, y′) ∈ D′. Assume that y′ 6∈ O.
Then, by definition of V ′, y′ ∈ V ′. We have, since y′ = yσ, y′ ∈ n(yσ) and
since ¬x′ ≺ y, we have, by definition of ≺ ′, ¬x′ ≺ ′y′ and thus (x′, y′) ∈ D′.
So Dσ ⊆ D′.

B Open bisimulation in the spi-calculus

In the following, we concentrate on how to extend K−open bisimilarity to the
spi-calculus. This follows mainly ideas of [Bri02] and [BBN04] and the ideas
already given in the main part of this article. Unfortunately, we did not have
time to explain deeply our definitions. However, we have decided to put them
in this appendix so that an interested reader can see how K−open bisimilarity
extends to the spi-calculus. We first introduce the reader to spi-calculus and
late hedged bisimulation. Then in Section B.3, we give the definition of our
bisimulation in spi-calculus and then state a soundness theorem with respect
to late hedged bisimilarity.

B.1 The spi-calculus

B.1.1 Syntax and semantics

The spi-calculus is a process calculus that was introduced by Abadi and Gor-
don [AG99] to model and study cryptographic protocols.

The syntax of the spi-calculus is given by Table 1 and Table 3. We have
chosen to focus the study of this paper to a shared-key cryptosystem but the

16

Briais, Nestmann

language of messages can be easily extended to deal with public/private key,
pairing and/or hashing (see [BBN04] or [Bri04] for more details).

Late semantics of the spi-calculus has been defined Section 2.2.

B.2 Late hedged bisimulation

We present in this section the late hedged bisimulation inspired by the def-
inition of early hedged bisimulation that was defined in [BN02]. Abadi and
Gordon first noticed that the classical notion of bisimulation as commonly used
in the π-calculus was not really interesting for the spi-calculus and they pro-
posed an environment-sensitive bisimulation: the framed bisimulation. Hedged
bisimulation is another kind of environment-sensitive bisimulation where the
environment (which can be understood as the knowledge of a potential at-
tacker) is represented by a hedge. It has been shown in [BN02] that early
hedged bisimilarity coincides with barbed equivalence.

B.2.1 Hedges

Definition B.1 If C ⊆ A×B for some sets A and B, we define

• π1(C)
def
= {a ∈ A | ∃b ∈ B : (a, b) ∈ C},

• π2(C)
def
= {b ∈ B | ∃a ∈ A : (a, b) ∈ C}, and

• C−1 = {(b, a) ∈ A×B | (a, b) ∈ C}.
We recall that the reader who is interested in a richer message language

or in seeing formal definitions about hedges is invited to consult [Bri04] (in
particular, the definition of analysis is given precisely and it is shown how to
extend the definition of consistency).

Definition B.2 (hedge) A hedge is a finite subset of M×M. The set of
all hedges is H.

If h is a hedge, we define the synthesis S(h) of h, the analysis A(h) of h
and the irreducibles I(h) of h.

Definition B.3 (synthesis,analysis,irreducibles) Let h be a hedge.

The synthesis S(h) of h is the smallest subset of M×M containing h and
satisfying:

(syn-enc)
(M,N) ∈ S(h) (K,L) ∈ S(h)

(EK(M),EL(N)) ∈ S(h)

The analysis A(h) of h is the smallest hedge containing h and satisfying:

(ana-dec)
(EK(M),EL(N)) ∈ A(h) (K,L) ∈ S(A(h))

(M,N) ∈ A(h)

17

Briais, Nestmann

Finally, the irreducibles I(h) of h is defined by:

I(h)
def
= A(h) \ {(EK(M),EL(N)) ∈ A(h) | (K,L) ∈ S(A(h))}

Definition B.4 (left-consistency) A hedge h is left-consistent if for all
(M,N) ∈ h, we have

(i) M ∈ N ⇒ N ∈ N
(ii) ∀(M ′, N ′) ∈ h : M = M ′ ⇒ N = N ′

(iii) if M = EK(M ′) then K 6∈ π1(S(h))

Definition B.5 (consistency) A hedge h is consistent if h and h−1 are left-
consistent.

B.2.2 Late hedged bisimulation

Definition B.6 (hedged relation) A hedged-relation R is a subset of H×
P × P such that ∀(h, P,Q) ∈ R : fn(P) ⊂ n(π1(h))∧ fn(Q) ⊂ n(π2(h)).

A hedged relation R is called

• consistent if ∀(h, P,Q) ∈ R : h is consistent;
• symmetric if ∀(h, P,Q) : (h, P,Q) ∈ R ⇔ (h−1, Q, P) ∈ R
Definition B.7 (late hedged bisimulation)
A symmetric consistent hedged-relation R is a late hedged bisimulation if for
all (h, P,Q) ∈ R, if P

µ1−→ P ′ with bn(µ1) ∩ n(π1(h)) = ∅ and ch(µ1) ∈ π1(h)

(if µ1 6= τ), then there exists Q′ and µ2 such that Q
µ2−→ Q′ with bn(µ2) ∩

n(π2(h)) = ∅ and

• if µ1 = τ then µ2 = τ and (h, P ′, Q′) ∈ R
• if µ1 = a1(x1) then µ2 = a2(x2) where (a1, a2) ∈ S(h) and for all B ⊆ N×N

consistent, M1,M2 ∈M such that
· π1(B) \ n(M1) = ∅
· π1(B) ∩ n(π1(h)) = ∅ = π2(B) ∩ n(π2(h))
· (M1,M2) ∈ S(h ∪B)
we have (h ∪B,P ′{M1/x1}, Q′{M2/x2}) ∈ R

• if µ1 = (νc̃) a1M1 then µ2 = (νd̃) a2M2 where (a1, a2) ∈ S(h)
and (I(h ∪ {(M1,M2)}), P ′, Q′) ∈ R

Definition B.8 (late hedged bisimilarity) Let P,Q ∈ P and h ∈ H such
that fn(P) ⊆ n(π1(h)) and fn(Q) ⊆ n(π2(h)). We say that P and Q are late h
hedged bisimilar – written P ≈h

lh Q if there exists a late hedged bisimulation
R such that (h, P,Q) ∈ R.

B.3 Open hedged bisimulation

Definition B.9 (S-environment)
The quadruple (h, v, ≺ , (γl, γr)) is a S-environment if h ⊆ M ×M, v ⊆
N × N are two finite sets such that h ∩ v = ∅, ≺ ⊆ h × v, γl ⊆ π1(v) and

18

Briais, Nestmann

γr ⊆ π2(v) such that

∀(M,N) ∈ h, (x, y) ∈ v : (M,N) ≺ (x, y) ⇒ x 6∈ n(M)∧ y 6∈ n(N)

The set of all S-environments is Sh.

For (x, y) ∈ v, we define h≺(x,y)

def
= {(M,N) | (M,N) ≺ (x, y)}.

We define e−1 def
= (h−1, v−1, ≺ −1, (γr, γl))

where ≺ −1 = {((N,M), (y, x)) | (M,N) ≺ (x, y)}.
We define n1(e)

def
= n(π1(h ∪ v)) and n2(e)

def
= n(π2(h ∪ v)).

We define H(e) = I(h ∪ v) and S(e) = S(H(e)).

The intuition behind a S-environment e = (h, v, ≺ , (γl, γr)) is as for K-
environment. The hedge h represents the messages emitted by the two players,
v represents the names input by these two players, the relation ≺ stores the
time precedence between the emitted messages and the input names (thus a
message containing x cannot have been emitted before the name x had been
input) and (γl, γr) is an additional component that tells which input names
should be really names and not arbitrary messages. For the π-calculus, this
last component does not exist because messages are names.

Definition B.10 Let h be a hedge and (σ, ρ) be a pair of substitutions. We

define h(σ, ρ)
def
= {(Mσ,Nρ) | (M,N) ∈ h}.

Definition B.11 (respectful substitutions) Let (σ, ρ) be a pair of substi-
tutions, e = (h, v, ≺ , (γl, γr)) be a S-environment and B ⊆ N×N a consistent
hedge. We say that (σ, ρ) respects e with B – written (σ, ρ) .B e – if

• supp(σ) ⊆ π1(v) and supp(ρ) ⊆ π2(v)
• ∀(x, y) ∈ v : x ∈ supp(σ) ⇔ y ∈ supp(ρ)
• π1(B) \ n(cosupp(σ)) = ∅
• π1(B) ∩ n(π1(h ∪ (v \ v(σ,ρ)))) = ∅ = π2(B) ∩ n(π2(h ∪ (v \ v(σ,ρ))))
• ∀(x, y) ∈ v(σ,ρ) : (xσ, yρ) ∈ S(I(h≺(x,y)(σ, ρ) ∪B ∪ (v \ v(σ,ρ)))) where

v(σ,ρ) = v ∩ (supp(σ)× supp(ρ))
• ∀x ∈ γl : xσ ∈ N
• ∀y ∈ γr : yρ ∈ N
Definition B.12 (S-environment updating) Let (σ, ρ) be a pair of sub-
stitutions, e = (h, v, ≺ , (γl, γr)) be a S-environment and B ⊆ N × N a

consistent hedge such that (σ, ρ) .B e. The update e
(σ,ρ)
B = (h′, v′, ≺ ′, (γ′l, γ

′
r))

of e by (σ, ρ) is defined as follows:

• h′ = h(σ, ρ)
• v′ = (v \ (supp(σ)× supp(ρ))) ∪B
• ≺ ′ is defined by

(Mσ,Nρ) ≺ ′(x′, y′) ⇔
∧

(x,y)∈v ∧x′∈n(xσ)

(M,N) ≺ (x, y)

19

Briais, Nestmann

• γ′l = γlσ ∩ π1(v
′)

• γ′r = γrρ ∩ π2(v
′)

Definition B.13 (consistency) A S-environment e = (h, v, ≺ , (γl, γr)) is
consistent if for all (σ, ρ), B such that (σ, ρ) .B e, we have:

• I(h′ ∪ v′) is consistent
• ∀(x, y) ∈ v′ : x ∈ γ′l ⇔ y ∈ γ′r

where (h′, v′, ≺ ′, (γ′l, γ
′
r)) = e

(σ,ρ)
B .

Definition B.14 (extension) Let e = (h, v, ≺ , (γl, γr)) be a S-environment.

If (M,N) ∈ M×M, we define e ⊕O (M,N)
def
= (h′, v, ≺ , (γl, γr)) where

h′
def
=

{
h ∪ {(M,N)} if (M,N) 6∈ v
h otherwise

Moreover, if (x, y) ∈ N × N such that x 6∈ n1(e) and y 6∈ n2(e), we

define e ⊕V (x, y)
def
= (h, v′, ≺ ′, (γl, γr)) where v′

def
= v ∪ {(x, y)} and ≺ ′ def

=
≺ ∪ h× {(x, y)}.

Finally, if S1 and S2 are two finite sets of names, we define

e⊕c (S1, S2)
def
= (h, v, ≺ , (γl ∪ (S1 ∩ π1(v)), γr ∪ (S2 ∩ π2(v)))).

Definition B.15 An open hedged-relation R is a subset of Sh×P ×P such
that ∀(e, P,Q) ∈ R : fn(P) ⊆ n1(e)∧ fn(Q) ⊆ n2(e).

It is called

• consistent if ∀(e, P,Q) ∈ R : e is consistent
• symmetric if ∀(e, P,Q) : (e, P,Q) ∈ R ⇔ (e−1, Q, P) ∈ R
Definition B.16 (open hedged bisimulation)
A symmetric consistent open hedged-relation R is an open hedged bisimulation
if for all (e, P,Q) ∈ R, for all (σ, ρ) and B such that (σ, ρ) .B e, if Pσ

µ1−→S1 P
′

with bn(µ1)∩n1(e
(σ,ρ)
B) = ∅ and ch(µ1) ∈ π1(S(e

(σ,ρ)
B)) (if µ1 6= τ), there exists

Q′, µ2 and S2 such that Qρ
µ2−→S2 Q

′ with bn(µ2) ∩ n2(e
(σ,ρ)
B) = ∅ and

• if µ1 = τ then µ2 = τ and (e
(σ,ρ)
B ⊕c (S1, S2), P

′, Q′) ∈ R
• if µ1 = a1(x1) then µ2 = a2(x2) where (a1, a2) ∈ S(e

(σ,ρ)
B) and

(e
(σ,ρ)
B ⊕V (x1, x2)⊕c (S1, S2), P

′, Q′) ∈ R
• if µ1 = (νc̃) a1M1 then µ2 = (νd̃) a2M2 where (a1, a2) ∈ S(e

(σ,ρ)
B) and

(e
(σ,ρ)
B ⊕O (M1,M2)⊕c (S1, S2), P

′, Q′) ∈ R
Definition B.17 (open hedged bisimilarity) Let P,Q ∈ P and e ∈ Sh

such that fn(P) ⊆ n1(e) and fn(Q) ⊆ n2(e). We say that P and Q are
open e hedged bisimilar – written P ≈e

oh Q – if there exists an open hedged
bisimulation R such that (e, P,Q) ∈ R.

Lemma B.18 Let P,Q ∈ P and e ∈ Sh such that fn(P) ⊆ n1(e) and fn(Q) ⊆

20

Briais, Nestmann

n2(e). Then, we have

P ≈e
oh Q⇒ (∀(σ, ρ), B : (σ, ρ) .B e⇒ P ≈H(e

(σ,ρ)
B)

lh Q)

21

	Introduction
	Open bisimulation
	Syntax of the -calculus and the spi-calculus
	Labelled (late) semantics
	Open bisimulation in the -calculus

	Open bisimulation, reloaded
	A freshness-aware variant of open bisimulation
	A knowledge-aware variant of open bisimulation

	Conclusion and future work
	References
	Proofs
	Open bisimulation in the spi-calculus
	The spi-calculus
	Late hedged bisimulation
	Open hedged bisimulation

